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Abstract

In this paper, I present a system for reliably distinguishing between two levels of applied finger pressure on planar
surfaces using a thermal camera. This work is the first to do so without requiring prior per-user calibration, and
will enable arbitrary natural materials to be used as touchscreen surfaces in augmented reality applications. Two
approaches were explored during this research for swipe pressure identification, which took place over the Spring
and Fall Semesters of 2018. The first approach used morphological filters and supplied handcrafted features as
input to a random forest classifier. The second approach used convolutional neural networks to classify both raw
and filtered video data using several approaches. It was found that convolutional neural networks could only
consistently outperform the random forest classifier when the same morphological filtering had been applied on
the input videos.
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1 Introduction
1.1 Problem Statement
Modern LCD touchscreens are able to recognize a wide variety of user interactions such as tapping and swiping,
each of which elicit a unique software response. When working with projected images (e.g. projecting a screen
onto an ordinary wooden desk to create a “smart desk”), this type of interaction is not possible due to the lack of
touch sensors embedded into the natural surface. In order to demonstrate that it is feasible to remotely sense subtle
differences in user swipe gestures, I have developed a system which can distinguish between low and high pressure
finger swipes without requiring per-user calibration beforehand. This particular differentiation was chosen due the
difficulty of the task (with an RGB camera, the pressure difference is indistinguishable due to identical fingertip
motion) and a widespread lack of touchscreen support for this feature. Successfully and reliably detecting finger
swipe pressure demonstrates that thermal cameras can be used to recognize and analyze user gestures on arbitrary
natural surfaces. This greatly improves the adaptability of touchscreens, enabling them to be used where installing
touch sensors in unfeasible or impractical.

1.2 Objectives
The objectives of this research were to accurately detect the pressure difference between hard and soft swipes on a
natural planar surface using a thermal camera, without requiring prior per-user calibration. Swipes were performed
and recorded on wooden, laminated, drywall, cloth, concrete, and whiteboard surfaces, and classifiers were trained
independently for each material. Each classifier was trained using a leave-one-out approach, where it learns from
other users the patterns which correspond to soft and hard swipes, and then attempts to properly classify the swipes
of a newly introduced user. This represents a realistic scenario for a commercially deployed system, and it is highly
desirable to avoid requiring per-user calibration for hard and soft swipes to improve classification accuracy.

1.3 Limitations
Several simplifications have been made to our testing environment which cannot be expected in an application
setting. Firstly, users were instructed to wait several seconds between performing each swipe to allow the heat from
the previous swipe to fully dissipate from the surface before recording the next one. In order to account for this,
in future work a more sophisticated method of background subtraction must be developed to account for regions
where a swipe has been most recently performed. Secondly, because each video in this study contains a single swipe,
our classifier will not be effective in a multi-user environment where multiple actions may occur simultaneously.

1.4 Broader Impacts
As augmented reality systems grow in popularity and sophistication, people will increasingly interact with the
real world through these partially immersive devices. Currently, users are limited to interacting with virtual
environments through handheld controllers and arm gestures. As technology improves, reliance on controllers will
decrease and users will be able to interact directly with their surroundings. In this scenario, thermal cameras could
be incredibly useful for effectively capturing and quantifying a user’s interaction with their environment, such as
selecting items on a planar menu or grasping objects.
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2 Literature Review
2.1 Thermal Imaging
On the electromagnetic spectrum, thermal radiation is classified as infrared light (light with a wavelength of 800nm
to 1mm), since it has a wavelength of 7 to 15µm [7]. At this frequency, electromagnetic waves are not visible to the
naked eye and must be detected using a sensor called a microbolometer, shown in Figure 2.1a. As thermal radiation
strikes a microbolometer, it absorbs heat and becomes less electrically resistive. By measuring the minute changes
in resistivity of a microbolometer pixel array (see Figure 2.1b), an image can be generated which visually depicts
the relative quantities of heat radiated from an object. The quality of microbolometers has increased substantially
in recent years, and high-quality thermal cameras can now capture images with 640× 480 pixel resolution [8].

Figure 2.1: (a) Single Microbolometer (b) Microbolometer Pixel Array

2.2 Finger Gesture Tracking
Work in this field began in 1993, when Pierre Wellner designed the “DigitalDesk”, an extension of the ordinary
workplace desktop which included projected content [10]. A schematic of the DigitalDesk is shown in Figure 2.2.
Wellner tracked user’s finger movements by computing the difference of consecutive frames. This simple technique,
although useful for identifying regions of a video where motion has recently occurred, is neither able to distinguish
hand movement from other movements which may occur nor pinpoint exactly where the user’s fingertip is located.

Oka et al. improved upon previous work in 2002 with the revolutionary idea of using thermal cameras to iden-
tify user’s fingertips [11]. Reasoning that infrared cameras would be impervious to changes in lighting, patterns
in projected content, and complex or dynamic backgrounds (issues which had plagued similar research endeavors
in the past), Oka et al. successfully performed real-time tracking of multiple fingertips using a thermal camera.
Several previous approaches had relied on detecting the user’s hand based on a global “skin color” (which is not
particularly robust given the wide range of possible skin colors) or using colored markers (which are cumbersome
and would not realistically be used for an actual application). First, the center of the user’s hand is detected by
thresholding the image and eroding the result (see Appendix A.3.1 for an explanation of morphological filtering) to
identify the region of the user’s hand farthest from a boundary. At this point, several parameters must be initial-
ized specifically for each user, such as their approximate hand and finger sizes. Next, template-based matching is
performed to identify all visible fingertips, correlations are determined between frames, and their trajectories over
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CHAPTER 2. LITERATURE REVIEW 5

Figure 2.2: The DigitalDesk [10]

time are mathematically modelled. The researchers could distinguish between a circle, square, and triangle being
drawn on the desktop surface with 99.2% accuracy. Figure 2.3 shows three extended fingertips being tracked in real
time as a circle is drawn.

Figure 2.3: Real-Time Fingertip Tracking [11]

In 2005 Iwai and Sato developed the “ThermoTablet”, a painting application which enabled temperature-based
interactions with a painting canvas [12]. The back-projected canvas surface was digitally updated based on the
temperature of the canvas, which was detected using an infrared camera also located behind the translucent canvas.

At the same time, Andrew Wilson developed a stereoscopic system which could detect a user’s hand as it hovered
above a touchscreen [13]. Unlike the passive measurement devices used by Oka et al., Wilson paired an infrared LED
light source with a camera overlaid with an infrared band-pass filter and mounted them overhead. Thus, instead of
passively detecting natural infrared radiation emitted from a user’s hand, Wilson’s system bathed the entire scene
in infrared light, and then measured where the light was blocked by the user’s hand. Based on the shape of the
resulting shadow, Wilson could pinpoint not only the user’s 2D fingertip location on the projected surface, but also
the height at which the user’s hand was hovering above the surface. Figure 2.4 shows Wilson’s design in more detail.

The “SixthSense” wearable gestural interface developed by Mistry and Maes in 2009 is a pendant-like mobile
wearable device comprised of a mini-projector, a mirror, and a camera [14]. The projector can display visual in-
formation on any nearby surfaces or physical objects while the camera is used to recognize and track the user’s
hand gestures. In [17], Kurz demonstrates that thermal cameras can be used to accurately identify contact points
between a user’s finger and an arbitrary object or surface. Together, these results foreshadow the future ubiquity
and potential applications of wearable augmented reality devices.

In 2011, Larson et al. explored the detection of shape-based, pressure-based, and multi-finger gestures using
thermal cameras [15]. Larson first denoised each frame using a moving-average filter, then thresholded using Otsu’s
algorithm [3], thinned the resulting image, and applied a hit-or-miss transform (see Appendix A.3.1) to the image
with a rotating 3×3 structuring element to determine the endpoints of each finger. The search space is constrained
by zeroing pixels which were not located within a hand segmentation in the past second, and the detection of heat
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Figure 2.4: PlayAnywhere Finger Tracking System [13]

traces is solved as a Bayesian estimation problem. The parameters for this system are calibrated to each user and
surface, by allowing them to first swipe at multiple pressure levels.

Saba et al. combine depth sensing using a Microsoft Kinect and temperature sensing using a thermal camera
in order to detect surface touch points and classify the pressure of chording motions [16]. They first perform static
background subtraction, threshold each frame using Otsu’s algorithm [3], and then perform an opening operation
on the resulting binary image to remove any gaps in the segmentation (see Appendix A.3.1). Each connected
component is processed using the Convex Hull method, and the resulting vertices are assumed to be the fingertips.
To reduce false positives, a distance constraint between the centroid of the hand and each fingertip is enforced, and
a hit-or-miss transform using a disk-shaped kernel is performed around each point on the convex hull. Residual
heat is detected as in [15]. Although the authors claim to be able to distinguish between various pressure levels, no
results are included in the paper.

2.3 Convolutional Neural Networks
Convolutional neural networks are widely used to perform image classification, and the second phase of my research
depended heavily upon their usage (please read Appendix A.2 for an introduction). CNNs were first introduced in
1999, by LeCun et al. [19]. This groundbreaking work replaced previous object and shape recognition approaches
which involved a pipeline using image segmentation, feature extraction, and object classification using template
matching, discriminative models, or generative methods. Instead, gradient-based learning was applied to exploit
strong local 2D image structure and reduce the number of model parameters required by fully-connected artificial
neural networks (see Appendix A.1 for an introduction). This foundational paper classified grayscale 32× 32 pixel
images from the MNIST dataset of handwritten digits [4] with 99.2% accuracy [19]. This initial network’s architec-
ture consisted of two repetitions of convolution and subsampling, followed by two fully-connected layers, shown in
Figure 2.5. Improvements over this initial architecture such as max-pooling were introduced in later years.

In 2013, 3D CNNs were first developed by Ji et al. in an attempt to incorporate temporal information into a
video classifier which could perform human action recognition [20]. From each input frame, they generated five
channels corresponding to the grayscale, x-gradient, y-gradient, x-optical flow, and y-optical flow representations
of the image. Their network architecture was similar to [19] in that it incorporated several repetitions of convolu-
tion and subsampling followed by a fully-connected classifier, but differed in the fact that each convolution used a
three-dimensional kernel which additionally incorporated information from adjacent frames. A diagram contrasting
2D and 3D convolution is shown in Figure 2.6, where the temporal dimension shows consecutive video frames.

Karpathy et al. in 2014 investigated multiple approaches for fusing per-frame information contained in videos
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Figure 2.5: First Convolutional Neural Network Architecture [19]

Figure 2.6: Three Dimensional Convolution [20]

during a large-scale video classification study [21]. They evaluated CNNs on 1 million YouTube videos to classify
each into one of 487 actions, and investigated Early, Late, and Slow Fusion approaches. These methods are shown in
Figure 2.7, where red, green, and blue boxes indicate convolutional, normalization, and pooling layers, respectively.
Please note that Early Fusion is equivalent to the 3D convolution used by Ji et al. in [20]. Late Fusion places two
separate single-frame networks (with shared parameters) several frames apart, and then merges the two streams in
the first fully-connected layer. Slow Fusion is a balanced mix which gradually expands the scope of both spatial and
temporal information used by the network. Although these spatio-temporal networks performed best, they gave a
surprisingly small improvement over single-frame models (63.3% versus 59.3% accuracy on the UCF-101 dataset,
which consists of 13, 320 videos of 101 human action categories [5]).

Later that year, Simonyan and Zisserman showed that using a two-stream CNN network with the original video
frames and dense optical flow representation could achieve a significant improvement over Slow Fusion, which until
then had performed best. They found that although performing 10-frame slow fusion achieves 56.4% accuracy on
the UCF-101 [5] dataset (which is an improvement over single-frame classification accuracy of 52.3%), single-frame
and 10-frame optical flow performed much better, with classification accuracies of 73.9% and 81.0%, respectively.
By pre-training their classifiers and fusing both approaches using a Support Vector Machine (SVM), Simonyan and
Zisserman achieved 87.0% classification accuracy on the UCF-101 dataset [22].
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Figure 2.7: Various Frame Fusion Approaches [21]

In 2015, work by Ng et al. [24] showed that Long Short-Term Memory cells could be incorporated into current
ConvNet architectures to more successfully aggregate information learned over longer periods of time and perform
accurate classification. Later work by Varol et al. [30] avoided LSTM and instead used long-term convolutions.
When used in a two-stream network with RGB and optical flow information, a 91.8% classification accuracy was
achieved on the UCF-101 dataset when iDT (improved Dense Trajectories) information was available.

Tran et al. [23] investigated numerous ConvNet architectures and found that a homogeneous structure of 2×2×2
pooling kernels and 3 × 3 × 3 convolution kernels performed best, achieving 85.2% classification accuracy on the
UCF-101 dataset. When optical flow or iDT were incorporated, this accuracy rose to 90.4%. Figure 2.8 presents
an overview of the advances in ConvNet architecture for video recognition outlined above.

Figure 2.8: Progression of ConvNet Video Classification Architectures [28]

In 2017, Jiang et al. [27] were the first to apply recent advances in ConvNet action recognition to the infrared
spectrum, using the InfAR dataset, created in 2016 [6]. Additional work in investigating ConvNet architectures was
performed by Diba et al. in [29] and by Feichtenhofer et al. in [26], who found that ConvNet stream fusion is best
performed in later convolutional layers.



3 Methodology
3.1 User-Independent Swipe Pressure Classification
The initial study occurred during the spring semester of 2018, including data collection, analysis, and classification.
The purpose of this study was to demonstrate that thermal cameras can be used to remotely distinguish between
hard and soft finger swipe pressures on natural surfaces without requiring user-specific information.

3.1.1 Capture Setup and Data Collection
A FLIR Vue Pro 640 × 512 30fps thermal camera was mounted overhead on a tripod facing downwards towards
the surface of interest. The two surfaces chosen for the purposes of this study were paper and plywood, due to
their low thermal reflectances and relatively high emittances. Video was recorded in 8-bit MJPEG format using a
linear white-hot temperature encoding scheme. The approximate temperature range selected on FLIR’s Android
application was from −25 ◦C to 135 ◦C.

Nine test subjects performed 32 swipes of any length or direction onto the test surface, as if they were interacting
with a large touchscreen. The test subjects were both male and female, all right handed, and ranging in age from
18 to 37 years old. The first 16 swipes were soft (low pressure) swipes, and the remaining 16 swipes were hard
(high pressure) swipes. Swipes were performed at regular intervals, with a 5 second delay between each soft swipe
and a 10 second delay between each hard swipe. This allowed for heat to fully dissipate from the surface each time
before the next swipe was performed. Data was recorded as a single video and later segmented into 32 clips, each
containing a single swipe. An example video frame is shown in Figure 3.1.

Figure 3.1: Recorded Thermal Finger Swipe

One issue which was consistently encountered during data collection is that FLIR Vue Pro thermal cameras will
dynamically rescale the intensities of each pixel based on the minimum and maximum temperatures currently sensed
within the image. This poses a problem because an object with a constant temperature will not be represented
by a constant pixel intensity in consecutive image frames. Considerable effort was spent attempting to disable this
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“feature”, but eventually it was determined that both hardware triggers and software flags are ignored by the FLIR
software. Upon conclusion of this study, all FLIR thermal cameras were returned and new cameras were purchased.
As a temporary workaround, I placed my hand in the corner of each video as it was captured to provide a steady
maximum temperature. The hand would eventually be cropped out by the video processing pipeline, described in
the next section.

3.1.2 Swipe Path Extraction
Each video containing a single swipe was first cropped to a predefined region of interest, selected so that it would
contain only the user’s hand, swipe, and the constant background surface. Next, static background subtraction
was performed and each video frame was binarized using a constant thermal intensity threshold of 4 on a scale of
0 to 255. A series of morphological filters with various kernel sizes was used to remove the user’s hand and any
remaining noise from the video (see Appendix A.3.1 for an explanation of morphological filters). First, a 3 × 3
kernel was used to apply opening and closing operations to the images and remove salt-and-pepper noise. Then,
the image was dilated using an 11 × 11 kernel to fill in any narrow gaps present between a user’s fingers. In an
effort to isolate the swipe path, narrow lines were first removed by performing opening and closing operations on
the image with kernels of size 25× 1 and 1× 25. Since the swipe path was removed by this operation, the difference
between the resulting and previous images was calculated, which contained narrow lines such as the swipe path. A
final opening operation was performed with a 7× 7 kernel in order to remove noise remaining near the edge of the
user’s hand. Remaining white pixels were considered to be the region of the image containing the user’s swipe, and
then this result was applied as a per-frame mask over the original video. The intermediate results at each stage of
this pipeline are shown in Figure 3.2.

Figure 3.2: Thermal image pipeline for swipe extraction

The video was then transformed into a single image by summing pixel intensities over time. Since the vast ma-
jority of user swipes were simple arcs, each swipe was approximated by a translated and rotated quadratic function.
In order to do this, the line of best fit was first calculated and the coordinate system was transformed so that the
line of best fit lay along the +X axis. Afterwards, the quadratic of best fit was calculated and the “swipe path”
was defined by pixels which when transformed lie within 10 pixels of this quadratic approximation. An example
polynomial swipe path approximation is shown in Figure 3.3, laid over the summed-pixel image.

Figure 3.3: Polynomial Swipe Approximation
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3.1.3 Swipe Classification
Using only the pixels which were contained within the swipe path, 30 features were calculated. The first 10 features
were the average pixel intensities during each 1/2 second time interval of the first 5 seconds of each swipe. The last
20 features were the maximum and average pixel intensities within each bin of a 10-bin histogram along the swipe
length in the accumulated intensity image. A 500-tree random forest classifier was trained on these 30 features,
with each split in the tree using at most 6 features. To perform user-agnostic classification, I performed leave-
one-out cross-validation using all 16 hard and soft swipes from the 8 remaining users. In order to determine the
impact that incorporating user-specific information would have on classification accuracy, I then re-trained the clas-
sifier while incorporating a gradually increasing number of samples from the user whose swipes were being classified.

3.2 Towards More Robust Swipe Pressure Classification
The second study occurred during the fall semester of 2018, and was performed as an extension of the original study
which explored the utility of ConvNets in swipe pressure classification, and expanded the set of material surfaces
used. All of the source code for this study is available on Github, at https://github.com/TimD1/HonorsThesis.
Using existing platforms such as Keras, Jupyter Notebook, and Docker greatly facilitated data analysis and classi-
fication.

3.2.1 Capture Setup and Data Collection
A FLIR Vue Pro 640× 512 30fps thermal camera was again used for data collection, and video was captured with
the same encoding and parameters as in Section 3.1. To investigate the performance of the new classifier on a
variety of surfaces, data was collected for user swipes on concrete, wood, laminant, cloth, plastic, and drywall. Ten
test subjects performed 25 soft swipes and 25 hard swipes for each material, again with a 5 second delay between
soft swipes and a 10 second delay between hard swipes. This provided us with a significantly larger dataset than
was collected during the previous semester.

3.2.2 Training Data Generation
During initial processing, a video segmentation script was used to segment one video recording into many clips,
which each contained a single swipe. When segmenting each video, a 256×256 pixel region of interest was manually
selected for each swipe. Selecting a uniform size for the region of interest was critical for this study because a con-
volutional neural network requires an input layer of fixed size. Figure 3.4 outlines the fixed-size region of interest
selected for an example video.

Figure 3.4: 256× 256 Pixel Region of Interest

It would be undesirable to use every frame within a swipe-containing video to train a ConvNet classifier. Nu-
merous frames near the beginning and end of each video neither coincide with the user’s swiping action nor show
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heat dissipating from the background surface. As such, including these frames would only introduce noise to the
classifier and prevent it from learning useful information from the training data. To select only the most relevant
frames from each video, a plot of average frame intensity over time was first generated to gain an intuition of
how this value develops over time. Afterwards, several heuristics were tested to determine the optimal approach
for extracting relevant frames. An example plot is shown below in Figure 3.5 which displays the average frame
intensities over time for user6 ’s hard swipes on a wooden surface.

Figure 3.5: Average Frame Intensity Over Time

The most successful heuristic tested required finding the first and last frames where the average pixel intensity
exceeded the average pixel intensity during the whole video. These two boundary points typically occurred when
the user’s hand entered and left the region of interest. It was noticed that the time intervals required for each
user to place their hand on the surface, perform a swipe, and remove their hand were approximately equal. Thus,
the first third of frames within this time interval was ignored (since the user had not begun performing the swipe)
and the central 8 frames of the remaining two-thirds of the frames within the interval were stored for further analysis.

Figure 3.6: Data augmentation (a) with, and (b) without the user’s hand

After these 8 frames were extracted from each video, data augmentation was performed to ensure that the
resulting classifier was robust. Each video frame was rotated in intervals of 90 degrees and reflected once, resulting
in an augmentation factor of 8x. Additional operations were not considered in the interest of time since there were
no Python libraries readily available for performing video data augmentation.

3.2.3 ConvNet Architecture Design
The reader may find it useful to first read Appendices A.1 and A.2. The first architecture used for swipe pressure
classification was modeled after VGGNet [25], and was composed of five repetitions of 3 × 3 convolution, 2 × 2
max-pooling, and 0.25 dropout layers followed by flattening and a single fully-connected layer to perform the final
binary classification. Input pixel intensities were rescaled to lie on the interval [0, 1]. This architecture also closely
resembled that used by Tran et al. in [23]. Unfortunately, it quickly became clear that insufficient training data
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was available to train such a deep neural network from scratch. Figure 3.7 shows the results of an early attempt at
CNN training where the network was unable to learn useful information and did worse-than-random classification
on the validation data.

Figure 3.7: Failing to train a deep ConvNet

In order to perform classification with the quantity of training data available, it was clear that both the depth
and size of the ConvNet used would have to be significantly reduced. First, I subsampled the 256× 256 images to
128× 128, 64× 64, and 32× 32 resolution and generated visuals of the results in order to determine the minimum
resolution which could capture sufficient information about the swipe. Based on these results, which are shown in
Figure 3.8, 128 × 128 pixel resolution was selected. The number of repeated convolution and pooling sequences
was reduced to two, and the number of kernels used for convolution at each layer was a modest 32. In order
to capture a greater quantity of spatial information in just two layers, kernel size was increased from 3 × 3 to
5 × 5. This drastically decreased the number of parameters which the ConvNet had to learn to perform classifi-
cation, and the final architecture (minus the flattening layer after the final pooling operation) is shown in Figure 3.9.

Figure 3.8: (a) 256× 256, (b) 128× 128, (c) 64× 64, and (d) 32× 32 image resolutions

Figure 3.9: Simple ConvNet Architecture



CHAPTER 3. METHODOLOGY 14

3.2.4 ConvNet Extensions
Pre-training on VGGNet

In order to more successfully classify thermal swipes with limited training data, each image was first modified to
be identical in format to images expected by the VGGNet architecture used for ImageNet classification. The initial
layers of VGGNet would be borrowed with their parameters unmodified so that they could recognize basic visual
patterns, and only the final fully-connected layers of the network would be retrained to classify swipe intensities
instead of performing object recognition. Each training image was first resized to dimensions 224 × 224 pixels,
the grayscale image was converted to its 3-channel RGB equivalent, and the mean values of each channel were
subtracted as in the original paper [25]. Although the modified VGGNet classifier had no trouble correctly clas-
sifying the training data, it was prone to severe overfitting, as Figure 3.10 shows. This means that the classifier
was learning to distinguish between the hard and soft swipes in the training dataset using methods which didn’t
generalize well. In order to rectify this, an aggressive dropout layer of 0.9 (90% weight dropout) was added before
the final ConvNet classification layer, which alleviated the issue.

Figure 3.10: Overfitting with VGGNet Pretraining

Late Fusion: Averaging

In the simple ConvNet architecture described above and shown in Figure 3.9, the eight consecutive frames extracted
from each video were classified independently. Intuitively, it should be possible to combine the information available
in these eight consecutive frames to perform more reliable swipe pressure classification. Figure 3.11 shows eight
consecutive frames with and without the user’s hand. In order to perform late fusion (see Figure 2.7) with this
information, both a simple averaging technique and a support-vector machine classifier were trained to merge the
classification results from each of the eight video frames into a single video classification result. This step was in
general not as useful as expected, and only the simple classification result averaging method reliably outperformed
single-frame classification.

Figure 3.11: Eight consecutive video frames during swipe (a) with, and (b) without the user’s hand



CHAPTER 3. METHODOLOGY 15

Early Fusion: Pixel Summation

In an attempt to merge per-frame information earlier in the pipeline, pixel intensity values were summed over time
to create an image representing the total thermal intensity over the course of the video for each pixel. Naturally,
this was done only for the video with the user’s hand removed, and the VGGNet-pretrained classifier was used
since it had shown the best performance thus far. Each resulting image is similar to that shown in Figure 3.3 but
without calculating a polynomial swipe approximation. This method worked well, most likely due to the fact that
averaging over many frames has the power to reduce the quantity of noise present if only a single frame were selected.

3D Convolution

Using three-dimensional convolution was investigated for this particular application, but with no positive results.
Like the early ConvNet which was too deep to learn anything from the training data, a ConvNet with three-
dimensional convolutions was too complex to extract useful information from the images provided. The most likely
cause is that although the noise present in consecutive frames of a thermal video is different (which can be reduced
by early or late fusion, as shown above), there are no significant temporal features which are useful for swipe
pressure classification. The timing of user swipes appears to be invariant to pressure, as Figure 4.5b demonstrates.
The only major useful piece of information which can be learned from temporal and not spatial information of
these thermal videos is the rate at which the heat from a finger swipe fades from a material’s surface, and is more
a function of the material and the ambient room temperature than the swipe pressure. Solving a more complex
classification problem without introducing additional information meant that three-dimensional ConvNets would
not perform well in this application.

Optical Flow Calculation

Similar to three-dimensional CNNs, optical flow calculation is an incredibly neat and useful tool which is of lim-
ited application to classification of thermal finger swipe pressures. As Figure 3.12 shows, the optical flow vectors
calculated for thermal finger swipe videos successfully identified the outline of the user’s hand. Combination of
optical flow information with raw video data is useful for action identification, where the region and characteristics
of motion vary significantly. For this application, classification using optical flow would only detect subtle timing
differences between hard and soft swipes. Given the low volume of training data available and lack of optical flow
information concerning the thermal swipe, this avenue did not look particularly promising and was not explored
further. Even in videos where the user’s hand was removed, optical flow only detected the small artifacts from the
user’s fingertips which were not perfectly removed. This can be seen by comparing Figures 3.11b and 3.12b, and is
understandable given that a swipe consists of fading intensity, rather than motion.

Figure 3.12: Optical flow calculations visualized (a) with, and (b) without the user’s hand in the video

3.2.5 Directions for Future Work
Increasing the volume of training data, either through additional augmentation or data collection, represents the
logical next step for this research. Although using a VGGNet-pretrained classifier on the summed-pixel image for
each video had the best performance, skipping the data augmentation step resulted in per-material classification
accuracies which varied each time the classifier was trained from 50% to 90%, instead of consistently achieving
above 80% classification accuracy. Logical modifications in training data generation would involve rotating images
in smaller increments, whitening, modifications of scale, image translation, and the intentional introduction of noise.
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Continued effort towards improving ConvNet architecture is promising, since I made no effort towards modifying
the learning rate and didn’t adjust model architecture once classification was working sufficiently well.

Improved methods for swipe identification and hand removal would additionally be helpful. Artifacts such as the
user’s fingertips were sometimes evident in the processed video frames, and the combination of more complex hand
modeling and identifying pixels which the hand has touched should increase the quality of image preprocessing,
decrease the noise content of resulting processed frames, and improve the resulting classification accuracy.

A final long-term avenue for improvement is the development of machine learning techniques and models.
ConvNets are most commonly applied to object recognition in images, where information is dense. For this particular
application, the information content of the thermal images used is considerably more sparse, and less than 25% of
each image’s pixels are non-zero. Some modification of ConvNet behavior based on data sparsity could be useful.



4 Results
4.1 Characteristics of Thermal Swipes

4.1.1 Heat Signature
As can be seen below in Figures 4.2a and 4.2c, average pixel intensity was consistently higher for hard swipes. Hard
swipes did have greater variance in intensity, though, possibly because users are less accustomed to performing
them regularly in everyday applications. It can also be seen clearly in Figures 4.2a and 4.2b that in the average
case, more heat was transferred to the desktop surface near the beginning and end of each swipe than the center.
This is because most users pause slightly when starting and ending their swiping motions. In Figure 4.2c, average
pixel intensity increases during the first three bins, after which it slowly decays. This shows that the average length
of time which a user takes to perform a swipe is 1.0 to 1.5 seconds, after which no more heat is transferred to the
material surface and the heat signature gradually decays.

Figure 4.1: Boxplots of all features used for classification: (a) average pixel intensity binned along swipe length,
(b) maximum pixel intensity binned along swipe length, and (c) average pixel intensity binned over time

After viewing several thermal videos, it was apparent that certain users started data collection with cold hands,
most likely because they had walked over to participate in the study from another academic building and just
returned from outdoors. For these users, their index fingers began cold but soon became considerably warmer
than their average skin temperature after performing numerous hard swipes on the first material’s surface. This
observation is outlined in Figure 4.1.

4.1.2 Materials
From Figures 4.3a and 4.3b it is apparent that the average measured pixel intensity was greater for paper than
for wood (please note the difference in scales). Despite this, the final classifier for the first study was better at
recognizing swipe pressures on a wooden surface. Although the paper reached a greater maximum temperature
than wood, it didn’t require significant finger pressure to do so, and there was a less noticeable difference between
hard and soft swipes on paper.

Material properties and initial temperatures impacted classification accuracy during this study, since not all ma-
terials reacted similarly to applied finger pressure. While materials such as wood and paper heated up fairly readily,
the same was not true for the concrete surface. This is most likely because the concrete used in this study was a
section of wall, similar to what would be used in a realistic application scenario. Since the concrete was anchored
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Figure 4.2: Finger temperature at the (a) beginning, (b) middle, and (c) end of data collection for the first material

to the building’s foundation, it was most likely a few degrees cooler than other materials. The whiteboard surface
was unique in its reflectance of heat; when a user stood in the wrong place, their outline was clearly visible in the
background. This was not avoided for the purposes of this study to simulate a real-world scenario and determine
if the classifier could nevertheless determine the swipe pressure. As Figure 4.2.2 shows, the only classifier which
had difficulties with this was the one which used an image of each swipe video summed temporally, magnifying this
noise. Example images of swipes on select materials are shown in Figure 4.4.

Figure 4.3: Per-user average swipe pixel intensities for (a) paper (b) wood, and (c) both materials

Figure 4.4: Example user swipes on (a) concrete (b) wood, and (c) whiteboard surfaces



CHAPTER 4. RESULTS 19

4.1.3 Users
Figure 4.3 shows that users clearly have different opinions regarding what constitutes a “soft” or a “hard” swipe. For
example, although user7 ’s hard and soft swipes were easily distinguishable from one another, with nearly no overlap
in the range of average pixel intensities for hard and soft swipes, user7 ’s soft swipes consistently resulted in greater
average pixel intensities than user8 ’s hard swipes. Clearly, simple thresholding is insufficient for accurate swipe
classification, and it will be shown in Section 4.2 that allowing our model to incorporate user-specific information
will positively impact classification accuracy. Each user’s average swipe intensity profile can be seen in Figure 4.5
over both swipe length and time.

Figure 4.5: Per-user average swipe pixel intensities binned over (a) swipe length (b) time

4.2 Classification Accuracy

4.2.1 Random Forest Classifier
As described in more detail in Section 3.1.3, random forest classifiers were trained on the paper dataset, the wood
dataset, and then both datasets combined. The resulting confusion matrices are shown in Figure 4.6, which contains
the sum of performing leave-one-out classification for each user in turn.
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Figure 4.6: Confusion matrices for user-agnostic classification using (a) paper, (b) wood, and (c) both materials

After performing user-agnostic swipe pressure classification, I decided to investigate the impact that including
example swipes from the user whose swipes were currently being classified would have on classification accuracy.
Figure 4.7 shows the evolution of pressure classification accuracy for each user as an increasing number of training
examples are provided from that user’s data. It is interesting to note that the classifier had more difficulty distin-
guishing between pressure levels for some users than others, and its classification accuracy improved over time for
some users and not others. The cause of this can be decided by more closely examining Figure 4.3. For example,
the user-agnostic classification accuracy of user7 ’s swipes is around 65%. Moreover, introducing hard samples into
the training dataset has no effect on classification accuracy, but once sufficient examples of user7 ’s soft swipe are
provided, classification accuracy for user7 quickly rises above 90%. This suggests that user7 ’s soft swipes are
stronger than average, but that it is not difficult to distinguish between user7 ’s soft and hard swipes. The per-user
histograms in Figure 4.3 confirm this hypothesis.
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Figure 4.7: Leave-one-out classification accuracy over time as an increasing number of (a) hard (b) soft (c) hard
and soft training examples from the user of interest are provided

4.2.2 Convolutional Neural Nets
Figure 4.2.2 shows the classification results for a single user’s swipes after training ConvNets on the swipes of
the nine remaining users, both by material and overall. My original intent was to perform 10-fold leave-one-
out training and classification, and take the average classification rate to generate this table, but the number of
approaches explored in this study prevented me from attaining a more generalizable result. The three classifiers
which performed most successfully were the shallow ConvNet whose architecture is shown in Figure 3.9, VGGNet
[25] with the fully-connected layer retrained on a single image, and VGGNet [25] with the fully-connected layer
retrained on each video’s summed pixel intensities.
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Ordinary CNN

Hand No Hand

1-Frame 8-Frame 1-Frame 8-Frame

Cloth 43.5 46.2 65.9 63.5

Concrete 55.3 50.0 83.4 92.3

Drywall 41.6 40.4 75.0 75.0

Laminate 66.8 67.3 50.7 50.0

Whiteboard 63.7 68.6 61.0 60.8

Wood 53.1 53.8 73.1 80.8

All 69.1 66.7 68.6 74.5

CNN with VGGNet Pre-training

Hand No Hand

1-Frame 8-Frame 1-Frame 8-Frame

52.6 51.9 78.4 80.8

95.7 96.1 85.3 92.3

66.6 67.3 73.1 73.1

63.0 61.5 81.5 86.5

87.7 90.2 75.7 80.4

54.3 53.8 71.4 78.8

† † † †

Sum CNN

No Hand

1-Frame

82.7

92.3

96.1

82.7

64.7

94.2

76.8

† These results were unable to be collected since all the training data could not fit on the GPU.

Figure 4.8: CNN Classification Results

Although the results certainly varied per material, it appears that using late fusion with 8-frame classification
outperformed single image classification. Additionally, both pre-training on VGGNet and preprocessing by removing
the user’s hand appear to have improved classification accuracy. Overall, it appears that a classifier pretrained on
VGGNet performed best at classifying an image with the hand removed and pixel intensities summed temporally.
The one notable exception to this classifier’s success is in performing classification on whiteboard swipes. This is
most likely because the whiteboard is the only material with significant reflectance, and the consistent background
heat emanating from the user’s body becomes noticeable when each video is summed over time. Figure 4.2.2
affirms that VGGNet-pretrained classifiers had no difficulty classifying whiteboard swipes in general when a single
image during the swipe is used. Combining the results of these two classifiers would most likely achieve the best
classification accuracy; this was not attempted due to GPU memory constraints.



A Appendix
A.1 Artificial Neural Networks (ANNs)

A.1.1 Overview
Over the past decade or so, as computational power has significantly increased, neural networks have emerged as one
of the most popular machine learning techniques. Modelled after biological neurons in the human brain, artificial
neural networks are capable of approximating complex non-linear functions. Using advanced statistical methods,
a neural network can be constructed which will with high probability map a set of inputs to the correct output, a
process termed “classification”. In order to generate such a network, where each node computes a weighted function
of its inputs, the correct weights must be “learned” and the network “trained” by being provided with a large enough
database of correctly mapped examples.

For example, if we wish to automatically classify grayscale images of handwritten digits (labelling each image
with the identified digit) which are 28 × 28 pixels large, with the tools available today it is relatively straightfor-
ward to construct a neural network which does so with 90% accuracy by providing it with thousands of labelled
examples (which are publicly available from the famous MNIST dataset [4]) and using various libraries to perform
the numerical optimization. Based on these many correctly labelled examples, the neural network is capable of
learning a function which maps all the pixel intensities in a new 28 × 28 image to an integer in the range 0 to
9. State-of-the-art neural network-based handwritten digit classifiers can now perform better than humans at the
same task.

A.1.2 Artificial Neurons
The Perceptron

The most basic building block of a neural network is a single neuron, which like its biological analogue generates
an output signal in response to various inputs. A direct visual comparison is shown in Figure A.1.

Figure A.1: Biological and Artificial Neurons [31]

We will begin our discussion of neurons with a perceptron, which is basically a simpler version of a neuron,
where the output is simply a shifted step function applied to a linear combination of the input variables. This can
be represented mathematically by the equation shown below:

output =

{
0 if

∑
j wjxj ≤ b

1 if
∑

j wjxj > b
(A.1)
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where x is the vector of input variables, w is the vector containing the associated neuron weights, and b is a constant
offset known as the “bias”. A graph of a unit step function time-shifted by constant b is shown in Figure A.2.

b0
0

1

Figure A.2: Unit Step Function

An Example Application

For example, if we would like to use a single neuron to predict whether or not a freshman will pass his second
chemistry test of the semester, we can use input variables x = 〈x1, x2, x3〉, weights w = 〈w1, w2, w3〉 and bias b:

x1 = a student′s score from the first test

x2 = student′s average score on all homework assignments

x3 = difference in hours spent studying for the two exams

w1 = 0.8

w2 = 0.2

w3 = 3

b = 65

For this application the quantity
∑

j wjxj in Equation A.1 represents the student’s expected score. If this predicted
score is greater than the traditional pass/fail cutoff of b = 65 points, we expect the student to pass the exam.
Otherwise, the student is predicted to fail the last exam.

Motivation for Activation Functions

Although this model is useful for predicting whether a given student will pass or fail the second exam, it is diffi-
cult to adjust the above weights to improve our model over time (a process called “backpropagation”) because we
have no means of knowing how far off our predictions were. If for an incorrect prediction

∑
j wjxj ≈ b, then our

model was not wildly inaccurate and the model weights should perhaps be slightly adjusted. On the other hand,
if
∑

j wjxj � b, then our model was way off the mark and our model’s weights may need significant adjustment.
In order to avoid the discontinuous unit step function used above, it is typically replaced with a non-linear but
continuous “activation function” in modern implementations. Three of the most common activation functions are
described below and then shown in Figure A.3:

sigmoid- named after its S-shaped form, it maps a real number to the range between 0 and 1 and visually appears
to be a smoother unit step function:

σ(x) =
1

1 + e−x

tanh- the hyperbolic tangent function, it maps a real number to the range between −1 and 1:

tanh (x) = 2σ(x)− 1

ReLU- the rectified linear unit function, it performs minimum thresholding at zero:

f(x) = max(0, x)
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Figure A.3: Various Activation Functions [33]

A.1.3 Networks of Neurons
For most applications, using a single neuron is insufficient to model the nonlinear complexities of the given problem.
In order to do so, it becomes necessary to combine numerous neurons together in a network of several layers, where
the inputs to each layer are the outputs of neurons at the previous layer. A basic fully-connected neural network
architecture is shown below in Figure A.4. This network is four layers deep, with two internal “hidden layers” which
comprise the bulk of the classifier.

Figure A.4: Neural Network Architecture [32]

A.2 Convolutional Neural Networks

A.2.1 Overview
Also known as CNNs or ConvNets, Convolutional Neural Networks are a biologically-inspired class of deep learning
models which are specifically designed to classify raw image data. As discussed in Section A.1, traditional neural
networks make predictions given a vector of independent input variables. Since image pixels are not independent
of one another and there are strong local patterns, artificial neural networks have historically not performed well in
classifying images. Rather than transforming a vector using a one-dimensional array of neurons in each of several
hidden layers, a convolutional neural network performs some differentiable function (which may or may not have
input parameters) on a three-dimensional volume at each layer to generate another three-dimensional volume.

As can be seen below in Figure A.5, a CNN gradually transforms the image data over the course of many layers,
slowly flattening a large 2-dimensional matrix into a 1-dimensional vector. The input volume’s length along the
third dimension is steadily increased by performing convolution with a greater number of kernels, and its length
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along the first two dimensions is reduced exponentially by down-sampling. This can again be seen in Figure A.5.

CNNs will gradually transform an input image to a single classification result. The convolutional layers allow
the classifier to identify two-dimensional spatial patterns without requiring fully connected layers which introduce
too many parameters. Small kernels and early convolutional layers will identify localized patterns whereas larger
kernels and later layers will recognize more general trends.

Figure A.5: CNN Architecture [35]

A.2.2 Layers
There are many different types of ConvNet layers, each designed to serve a specific function. What follows is a brief
summarization of the most commonly used layers.

Input Layer

The input layer holds the raw pixel values of an image. In the case of a grayscale image, the dimensions of this
layer are w × h. This layer is analogous to the input layer of an ANN, pictured in Figure A.4.

Convolutional Layer

A convolutional layer computes the convolution of the input volume with one or more smaller kernels of the same
size. If a convolutional layer immediately follows the input layer of a w × h grayscale image and 12 kernels are
used, the output volume will be w×h× 12 (assuming padding is used to retain image shape). Figure A.6 shows an
example of the convolution operation applied to image I with kernel K. Note that in this example, no padding is
used and the resulting image I ∗K decreases in size by 2k, where k is the kernel width.

Figure A.6: Convolution Example [34]

If kernel K is size k × k, then the radius r of kernel K is defined by r = bk/2c. A more formal mathematical
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definition of convolving image I with kernel K of radius r would then be:

I[y, x] ~K =

2r∑
j=0

2r∑
i=0

I[y − r + i, x− r + j] ∗K[j, i]

ReLU Layer

A rectified linear unit layer will perform the ReLU activation function (shown in Figure A.3c) element-wise on the
input. This leaves the dimensions of the input volume unchanged.

Pooling Layer

A pooling layer will perform down-sampling along the first two dimensions of the input, resulting in a smaller
output volume. Down-sampling is most commonly performed with the max() operation, where the maximum pixel
is selected within each block of s× s pixels (where s is called the “stride length”), giving rise to maximum pooling.
Figure A.7 shows an example of maximum pooling with stride length of 2, which is most commonly used in practice.

Figure A.7: Maximum Pooling [32]

Fully-Connected Layer

Once an image has been sufficiently down-sampled, the input volume is flattened so that it becomes one-dimensional
and a final fully-connected layer is used to make a prediction. This fully-connected layer is the same as a hidden or
output layer of an ordinary neural network, shown in Figure A.4.

A.3 Image Processing

A.3.1 Morphological Filtering
For the purposes of this discussion, we consider only morphological operations on binary black and white images.

Erosion & Dilation

The two most fundamental morphological operations are erosion and dilation. Each operation is performed on a
binary image using a “kernel” or “structuring element” K. In the example shown in Figures A.8 and A.9,

K =



0 0 1 1 1 0 0
0 1 1 1 1 1 0
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
0 1 1 1 1 1 0
0 0 1 1 1 0 0


=

(kernel not shown to scale). Notice that the central pixel in kernel K is white, as are most pixels immediately
surrounding it. During the dilation operation, the result of which is shown in Figure A.8c, the kernel K is laid as a
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template over the original image. If the center pixel of kernel K is placed over a white pixel, then any black pixels
in the original image which are located under a white pixel in the kernel are converted to white. During erosion the
opposite occurs, and white pixels in the original image which are located under a white pixel in the kernel when
the central kernel pixel is black are recolored black, the result of which is shown in Figure A.8b. Individually, these
two operations have the effect of either dilating or eroding the boundary of white pixels in the image, and are thus
aptly named.

Figure A.8: Basic Morphological Operations: (a) Original Image (b) Erosion (c) Dilation [36]

Opening & Closing

The “opening” and “closing” operations are equivalent to an erosion followed by a dilation, and a dilation followed
by an erosion, respectively. At first glance, it appears that eroding and then dilating an image should result in the
original image. However, this is not quite the case. If there is an isolated patch of white pixels which is smaller
than the kernel used to perform the erosion and dilation, then this patch will be fully recolored black during the
erosion operation and will not reappear after dilating the image. An example of this can be seen below, in Figure
A.9a. In fact, structuring elements of various sizes are often used specifically to remove unwanted patterns from
an image. This small 7× 7 kernel is well-suited to removing the salt-and-pepper noise of Figure A.9. If we instead
wanted to remove only thin vertical lines with widths of approximately 5 pixels, we would use something like a 1×8
kernel, which would remove from the image elements with widths of less than 8 pixels. Of course, the conjugate is
true for the closing operation, which can be used to effectively remove black pixels from a white background. This
operation can be seen in Figure A.9b, again applied with kernel K.

Figure A.9: Two-Step Morphological Operations: (a) Opening (b) Closing [36]

Hit-and-Miss

The “hit-and-miss” transformation is used to find patterns in binary images, where it finds regions of pixels which
match kernel K1 while not matching kernel K2 [37]. The hit-and-miss transformation thus comprises of three steps:

1. Eroding image A with structuring element K1.
2. Eroding the complement of image A with structuring element K2.
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3. Performing a logical AND operation on the two previous results.

The construction of a hit-and-miss kernel can be seen in Figure A.10. This filter will act as a template which is
laid over each position within the original image. In this example, the result will be 1 only if the image pixel below
the central hit-and-miss kernel pixel is 0 and all four adjacent pixels are 1. The diagonally-adjacent (kernel corner)
pixels have no effect. An example application of this kernel is shown in Figure A.11.

Figure A.10: (a) “Hit” kernel (b) “Miss” kernel (c) “Hit-and-Miss” kernel

Figure A.11: “Hit-and-Miss” Kernel Example

A.3.2 Optical Flow
Optical flow is the pattern of apparent motion of image objects between consecutive frames in a video. Dense optical
flow is a computed uniform 2D vector field corresponding to the apparent motion of each image pixel. Figure A.12
shows an example where optical flow has been computed using the Lucas-Kanade algorithm on a video of horses
running along the shore.

Figure A.12: Dense Optical Flow Example [38]
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