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Abstract

Motivation: As genome sequencing becomes cheaper and more accurate, it is becoming increasingly
viable to merge this data with electronic health information to inform clinical decisions.
Results: In this work we demonstrate a full pipeline for working with both PacBio sequencing data and
clinical FHIR® data, from initial data to tertiary analysis. The electronic health records are stored in
FHIR® – Fast Healthcare Interoperability Resource – format, the current leading standard for health care
data exchange. For the genomic data, we perform variant calling on long read PacBio HiFi data using
Cromwell on Azure. Both data formats are parsed, processed, and merged in a single scalable pipeline
which securely performs tertiary analyses using cloud-based Jupyter notebooks. We include three example
applications: exporting patient information to a database, clustering patients, and performing a simple
pharmacogenomic study.
Contact: timdunn@umich.edu
Supplementary information: Supplementary data are available at Bioinformatics Advances online, and
at https://github.com/microsoft/genomicsnotebook/tree/main/fhirgenomics.

1 Introduction
When visiting the doctor’s office for an annual physical, it’s typical to
have your vitals taken. Weight, blood pressure, and heart rate are all
important measurements that can indicate impending health issues. While
waiting in the lobby, it’s also common to fill out a short survey regarding
sleep, smoking, drug, and other lifestyle habits that may impact your
health. Some doctors even recommend blood work – laboratory testing
which measures cell counts and micronutrient levels – the results of which
could indicate other less visible issues. This smattering of multi-modal
information is then used by doctors to make informed decisions about
lifestyle and medication changes that may improve your overall health.
The more information a trained medical professional has available, the
better recommendations they can make towards improving their patient’s
health.

Soon, genomics data may routinely be used to complement this clinical
data. The first “complete” human genome was finished in 2000 at an
estimated cost of $300,000,000 [19]. Due to rapid improvements in
sequencing technologies, however, this cost has sharply declined over

the past two decades. Currently, whole genome sequencing costs around
$700 per patient [19] and is usually reserved only for those suffering from
cancer or rare genetic diseases. In just a few years, however, the cost will
likely be low enough for routine sequencing of ordinary patients.

Not only can genome sequencing lead to earlier and more accurate
genetic disease and cancer diagnoses, but it can also be used to predict
individualized responses to medications and characterize the body’s
internal micro-organisms and pathogens. For example, sequencing has
been widely used to identify exact SARS-CoV-2 strains [36] and analyzing
the gut microbiome can lead to insights regarding overall well-being [26].
Once sequencing costs have lowered, it will be possible to integrate
genomic data with existing clinical data to provide a more comprehensive
view of each and every patient. This data will, in turn, lead to a better
understanding of patient health and disease – particularly with the help of
machine learning.

Machine learning has caused immense scientific progress in recent
years when applied to new domains such as text recognition, protein
folding, and nanopore sequencing basecalling [48, 27, 40]. Unfortunately,
there are a number of legal, practical, and ethical concerns preventing the
immediate use of machine learning for diagnosing patients [15, 8, 28].
In the inevitable case of false positives and false negatives, how can
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Fig. 1. Example synthetic FHIR® data, generated with Synthea.

we perform root cause analysis or ensure that the same mis-diagnoses
won’t happen again? In many cases, we can’t. Machine learning can be
used, however, to find correlations between genetic alterations and clinical
observations, which can be used to guide further scientific research. Used
properly, machine learning can be a tool for discovery, accelerating our
progress in understanding genetic diseases and even lead to advances in
medication and gene therapy. In this work, we present a scalable and secure
proof-of-concept pipeline for combining clinical and genomic data in the
cloud, and demonstrate several possible use cases.

1.1 Clinical Data

FHIR®: Fast Healthcare Interoperability Resource Format
Clinical data can come in the form of numbers, raw text, images, or even
3D scans. Despite the inherent diversity of this data, it must be stored
in a consistent digital format that allows for easy and efficient exchange
between hospitals, laboratories, and data centers. The “Fast Healthcare
Interoperability Resource” (FHIR®) format is the current leading standard
for health care data exchange [5]. Each chunk of FHIR® data is an
instance of one of 140 pre-defined resources, represented in XML, JSON,
or RDF format. The framework was designed to be broad and extensible,
covering clinical healthcare, clinical trials, organization administration,
and finances. Data is commonly hosted on a secure server and accessed
from a FHIR® RESTful API that ensures secure and efficient querying of
patient data.

Synthea
Synthea is a widely-used open source tool for generating realistic (but
synthetic) patient data in FHIR® format [47]. This enables researchers
to work with realistic clinical datasets without worrying about any of the
legal, ethical, or security concerns that would accompany working with
real patient data. Figure 1 shows a snippet of realistic patient data generated
with Synthea.

1.2 Genomics Data

Sequencing Technologies
Illumina short read sequencing remains the dominant technology for
genome sequencing today. For years it has successfully provided
relatively low cost and massively-parallel short read sequencing. Recently,
however, newer long read technologies have begun to prove competitive.
Illumina short reads of several hundred bases typically achieve around
99.9% accuracy [16]. The newer and less mature long read sequencing
technologies such as Pacific Biosciences SMRT [42] and Oxford
Nanopore [25] haven’t achieved similar accuracy results until very

Fig. 2. Example VCF data, including both the file header and data. The first eight tab-
separated fields refer to a specific variant, and the remaining fields store information about
that variant as it pertains to each sample.

recently. These newer technologies can easily achieve average read lengths
of over 10,000 bases [25]. This greatly aids in assembling the human
genome in complex or repetitive genomic regions, and PacBio HiFi reads
were instrumental in the “Telomere-to-Telomere“ consortium completing
the first truly complete human genome in 2021 [35].

Variant Calling
Since two human genomes are 99.9% identical [20], the end goal of
most DNA sequencing efforts is to identify the differences between an
individual’s DNA and a standard reference sequence. This problem is
known as “variant calling”. These small changes in DNA can be in the form
of single nucleotide polymorphisms (abbreviated SNPs, A→G), insertions
(A→ATT), deletions (AGC→A), or structural variants (in which large
segments of DNA are inserted or deleted). In this work, we focus on small
variants, which include SNPs and insertions or deletions shorter than 50
bases. These variants are stored in “Variant Call Format” (VCF), which
notes the “reference” and actual (“alternate”) observed DNA sequence.
Figure 2 shows an example. Databases of known mutations and their
functional consequences (if any) on patient health are used to identify
important mutations [17].

1.3 Cloud Frameworks

FHIR® Integration
All of the major cloud providers have their own implementation of a FHIR
server that can readily be used with other cloud services. Amazon supports
“FHIR Works” on Amazon Web Services (AWS), Microsoft supports an
“Azure API for FHIR” on Azure, Google supports a “Cloud Healthcare
API” on Google Cloud, and IBM supports an “IBM FHIR Server” on the
IBM Cloud [29, 33, 10, 18]. There are numerous other open and closed
source standalone FHIR server implementations as well, such as HAPI
FHIR [2]. For our purposes, any of the FHIR server implementations that
integrate easily with Cromwell and a major cloud provider would work. We
selected Microsoft Azure and the “Azure API for FHIR” simply because
we had reduced-cost access to Azure Cloud computing resources.

Bioinformatics using Cromwell
Cromwell is an open-source workflow management system designed by
the Broad Institute for performing bioinformatics at scale [21]. Cromwell
can be configured to run with a Google Cloud backend through the Google
Genomics Pipelines API, an AWS backend using AWS Batch, or an Azure
backend using the “Cromwell on Azure” project [22, 31]. As mentioned in
the previous section, we selected the Microsoft Azure backend . PacBio has
released a public workflow for running a human whole genome sequencing
(WGS) pipeline using “Cromwell on Azure” [6]. It begins with unaligned
or aligned reads (in FASTQ or BAM format, respectively), and determines
large scale structural variants using pbsv [49] and hifiasm [9]. Reads are
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phased using WhatsHap [37] and small variants are called in VCF format
with DeepVariant [44].

1.4 Related Work

Previous works in merging clinical and genomic information have
primarily focused on extending the FHIR® implementation to include
genomic data. Earlier efforts such as “SMART on FHIR Genomics” were
influential in envisioning the design of such a standard [3]. A more recent
project by the Electronic Medical Records and Genomics (eMERGE)
Network developed a new standard format based on HL7® FHIR® to
represent clinical genomics results [34].

There has been significant progress within HL7® to adopt a standard
format for sharing genomic data as well. In particular, HL7® has
organized a Clinical Genomics Work Group to tackle this effort [23].
The current version of the HL7® FHIR® specification includes a
“Genomics Implementation Guidance” page, which is currently in the
“Trial Use” phase of development, with a Maturity Level of only 1
(on a scale from 0 to 5). Over the past several years, the HL7’s
recommendations for storing genomic data have shifted and evolved
rapidly due to fast-paced technological advancements and learnings from
practical experience. Regardless of whether the current standard is to store
data in an Observation, Sequence, Observation-genetics,
MolecularSequence, or Variant resource, the format is not yet
mature and there are no guarantees of long-term stability with regards to
the current format. To avoid this problem, we convert the contents of stable
FHIR® resource implementations to a tabular format prior to merging with
genetic information.

Although several previous works explore merging clinical and genomic
patient data, they primarily focus on the release of large datasets of cancer
patients. Project GENIE is the largest of such efforts, resulting in more than
100,000 sequenced patients from cancer centers worldwide [11]. Despite
the availability of merged clinical and genomic data – at least for cancer
patients – there is no publicly available standard pipeline for merging the
two data modalities. This work presents such a pipeline for secure and
scalable merging of clinical and genomic data using cloud resources.

2 Methods
Figure 3 shows an overview of our data processing pipeline, which was
shared for all three of our example applications. This pipeline processes
the PacBio and FHIR® data prior to merging them into a single DataFrame
for further analyses. In the following two sections, we first describe our
treatment of the PacBio genomics data, and then our methods for dealing
with the synthetic FHIR® data.

2.1 Genomics Data

For our genomics data, the first step was variant calling using Cromwell
on Azure. A deployment script available from Microsoft’s Cromwell on
Azure repository [31] was first downloaded and executed to initialize the
workflow environment. The GCA_000001405.15_GRCh38_no_alt
_analysis_set.fasta reference genome was downloaded from the
NCBI [39] database, and a BED file containing tandem repeat regions
to exclude was downloaded from the pbsv repository [49]. In order to
demonstrate the Cromwell workflow, we used the GIAB ("Genome in a
Bottle") PacBio sequencing data for human sample HG002 [50]. We use
sample VCF data from a larger dataset for all downstream processing.
Additionally, we made several modifications to PacBio’s default human
WGS workflow configuration [6]. These changes consist of several
bugfixes, which have now been merged into their official repository, and
removing the tandem-genotypes step for simplicity.

Once the variants were called using Cromwell on Azure, we
used BCFTools [12] to normalize the variant representation and split
sites with multiple alleles. Normalizing involves left-aligning insertions
and deletions (INDELs) and splitting multi-nucleotide polymorphisms
(MNPs) in to single-nucleotide polymorphisms (SNPs) [12]. Splitting
multi-allelic sites was necessary because in order to convert the VCF to
TSV format, there must be a constant number of fields (columns) per entry
(genomic position). By splitting entries with multiple possible variants into
multiple entries – each with a single variant – we ensured that fields such
as allele frequency are represeneted with a fixed number of columns.

Next, we performed linkage disequilibrium (LD) pruning to remove
variants calls with high covariance, and ensure that most remaining variants
have a fairly high degree of independence from one another. At this point,
we used BCFTools to merge VCF files from all patients into a single
VCF file, and extracted select fields into a TSV file. Since our input files
were VCF, and not GVCF, they did not contain information regarding the
quality of reference calls for non-variant positions. To deal with this, we
assumed all missing entries to be a reference call of average quality and
depth for that sample, and imputed the genotype and phred likelihoods
under this assumption. As a final step, the TSV was loaded into a Pandas
DataFrame and transposed so that each row corresponds to a patient, and
the columns are the relevant genomic information: the genotype, allele
frequency, depth, and phred likelihood scores for a select group of variants.

2.2 Clinical Data

Using Synthea, we generated a synthetic dataset with the same number of
patients as included in our sample VCF files. For our data exportation
and patient clustering applications, we simply used Synthea with the
default parameters to generate a typical patient population. For the breast
cancer study, however, we added a custom module to model the simplified
progression of breast cancer in a cohort of affected patients. This module
is shown in Figure 4.

Combined with the Synthea flags -g F -a 30-90, this module
generates an exclusively adult female dataset of breast cancer patients,
who are treated with one of two medications: Doxorubicin or Epirubicin.
Patient survival rates, assumed to be 50% if left untreated, depend on a
combination of medication and presence of a specific variant. For patients
without the variant, survival rates can be improved to 90% by prescribing
Doxorubicin. For patients with the variant, the same survival rate is instead
achieved by prescribing Epirubicin. With all other groups, the survival
rate remains unchanged at 50%. This relationship which we’ve embedded
into our synthetic clinical data generation module should be discoverable
through downstream analyses, provided our patient cohort is large enough.

In a real clinical setting, patient records will be stored in FHIR® format
on a server, where they can be queried by clinicians. To model this setup,
we deploy a FHIR® server using the Azure API for FHIR, and transfer our
generated Synthea data to the server using the REST API. Using the FHIR
bulk import and export functionality would be a viable alternative (and a
potential direction for future work). We found that performing individual
requests allowed us to transfer fewer FHIR resources in total, and achieved
sufficient throughput.

In order to perform data science applications with FHIR® data, we
first need to convert the hierarchical JSON data into tabular format. An
existing open source tool called the “FHIR to Synapse Sync Agent” solves
this problem by downloading each FHIR® resource from a server and
converting it to tabular Parquet format [32]. Parquet files store the same
information as ordinary CSV (“comma-separated values”) or TSV (“tab-
separated values”) files, but in a more efficient compressed manner. Data
is stored in column-major order, which allows compression algorithms
such as run length encoding, dictionary encoding, or delta encoding to
be applied per column depending upon each column’s data format and
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Fig. 3. Overview of data processing pipeline, common to all demonstrated applications.

Fig. 4. Custom Synthea module for modelling breast cancer treatments and outcomes.

values [24]. It is important to note that although Parquet is a tabular format,
it is still able to store unstructured or nested fields present in the original
FHIR® resource by encoding them as JSON strings.

Once downloaded, we parse the Parquet FHIR® data to retrieve
relevant information and load it into a Pandas DataFrame [41]. Although
Parquet is already a tabular format, the converted data contains extraneous
information which must be discarded, and any useful information stored
within a JSON string must be extracted. Making matters more difficult,
FHIR® data pertaining to a single patient is stored in multiple resource
types. These files (such as Patient, Medication, or Condition resources)
must be parsed separately and the records associated with one another using
the patient’s unique Medical Record Number (MRN). We are able to map
information from multiple resources of the same type to a single patient
by adding another column to the DataFrame for each resource instance.
In the end, each row stores data for a single patient, and the numerous
columns contain all desired information about that patient, extracted from
the Parquet files. At this point the FHIR® and PacBio data can be merged
together, as shown in Figure 5.

3 Results
After merging these two data modalities, we explore three example use
cases for such data: exporting the information to a database, clustering
patients, and studying a cohort of breast cancer patients.

Application #1: Export to Database
The first such application that we explored was the simplest: exporting
the FHIR® and PacBio data to a database for further analyses. We
selected Azure Synapse Analytics as our database platform because
it ensures scalability and reliability. After converting our FHIR® and
PacBio DataFrames to Parquet format, we directly import them into
Azure Synapse. From there, we can perform joint queries on the two
datasets. This application is demonstrated in the supplementary notebook
1-data-export.ipynb.

Application #2: Patient Clustering
The second application we demonstrated was an exploratory clustering
of our patient dataset using three different clustering methods. Firstly, K-
means++: an iterative approach which updates cluster centroid locations to
minimize total inertia and uses repeated random initializations [4]. Inertia
is the average squared distance from each data point to the center of its
labelled cluster. Secondly, we used DBSCAN: a recursive approach that
builds clusters from high-density areas containing “core samples” [14].
Lastly, Spectral Clustering, which performs a low-dimensional embedding
of the samples’ affinity matrix prior to clustering [45].

Both K-means++ and Spectral Clustering require specifying the final
number of clusters a priori. To select a reasonable number of clusters we
used the “elbow method”, which consists of plotting the number of clusters
versus total inertia. As the number of clusters increases, the cluster inertia
will always decrease, but once the data has already been clustered fairly
well, there will be less benefit in introducing additional clusters. This
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Fig. 5. Final Pandas DataFrame of merged FHIR® and PacBio data.

Fig. 6. Patient clusters resulting from several different clustering algorithms.

Fig. 7. Evaluation of clustering methods using several different metrics.

shows up on an “elbow plot” as a bend towards the horizontal, which we
found occurs at n = 5. After selecting n for K-means++ and Spectral
Clustering, Figure 6 shows the resulting clusterings. Each point represents
a single patient, and each cluster of patients is colored uniformly.

We evaluated these three clustering methods using the Davies-
Bouldin Index [13], the Calinski-Harabsz Index [7], and the Silhouette
Coefficient [43]. Unlike the other two metrics, for the Davies-Bouldin
Index a lower score is better. These three evaluation metrics were
selected because they all do not require knowledge of some ground
truth clustering of samples into classes. Since we are simply trying to
discover similarities between patients, no ground truth is available. As
Figure 7 shows, K-Means++ selected the best clustering overall. This
application and evaluation is included in the supplementary notebook
2-clustering.ipynb.

Application #3: Breast Cancer Study
The final application we demonstrated was a basic pharmacogenomic study
to determine the effect of two different medication treatments on breast
cancer patients’ survival rates. As described in Section 2.2, a custom
Synthea module was designed which modelled the fact that outcomes were
only improved beyond the base 50% survival rate for patients who were
prescribed Epirubicin and had a particular genetic variant, and for patients
who were prescribed Doxorubicin and did not have the genetic variant.

Figure 8 shows a breakdown of patient variant presence, treatment type,
and survival.

We performed a one-sided z-test with a p-value of 0.01 to investigate
whether patients in each of the four groups (all combinations of
with/without variant and Doxorubicin/Epirubicin) had improved survival
rates over the expected outcome for untreated patients (a 50% survival
rate). As expected, we found a significant increase in survival rates for
patients without the variant who were prescribed Doxorubicin (p <

10−8), and for patients with the variant who were prescribed Epirubicin
(p < 10−5). For patients without the variant who were prescribed
Epirubicin (p = 0.109) and patients with the variant who were prescribied
Doxorubicin (p = 0.5932), we did not find a significant improvement in
outcomes, as expected. This application is included in the supplementary
notebook 3-pharmacogenomics-confidential.ipynb. The
custom Synthea module definition is included in supplementary file
3-simple-breast-cancer-module.json.

Confidentiality
When dealing with patient health information, ensuring confidentiality
and data integrity is paramount. In order to ensure that all data processing
is secure, our pipeline works within a Jupyter notebook hosted on an
Azure “Confidential Compute” virtual machine [38]. Results are then
made available on a local machine using SSH tunneling. These virtual
machines have security features such as secure boot, a virtual trusted
platform module (vTPM), boot integrity monitoring, and virtualization-
based security [30]. Together, these features protect against persistent or
advanced threats such as rootkits or bootkits, and ensure that the virtual
machine has booted into a trusted environment as expected. Virtualization
provides further security by isolating memory address spaces to remove
any possibility of memory cross-contamination. Additionally, depending
upon the underlying hardware, compute instances will include either
Intel Software Guard Extensions (Intel SGX) or AMD Secure Encrypted
Virtualization (SEV-SNP) support.

4 Discussion
One of the most unique aspects of this study is the analysis of long-
read sequencing data together with clinical data for the first time. The
outputs of the study will be an important use-case for researchers who
are working on genetic data analysis. It is very important to acquire the
necessary knowledge for the creation of decision support systems. We
envision that eventually analyses such as our pharmacogenomic study will
become commonplace, an automated analysis that occurs in real-time. This
would provide clinicians with the ability to recommend prescriptions and
treatments which are specifically tailored to the genetic makeup of each
patient, based on the responses of similar individuals to each possible
treatment. These types of research studies will also form the basis of data
science models that are likely to be used in the near future.
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Fig. 8. Sankey diagram showing distribution of patient treatments and outcomes.

The bulk of our pipeline is responsible for processing genomic and
clinical data in a manner that ultimately results in a tabular format
containing a row for each patient and a column for each feature. Machine
learning on tabular data works well with a restricted set of features,
but does not scale well as the number of columns increases due to the
“curse of dimensionality” [46]. Moreover, some information is not easily
represented in tabular format without loss of information or extreme data
sparsity. For example, storing the medications taken by each patient
would require either a boolean column for each possible medication, or
categorical columns storing the last n medications taken by each patient.
Most patients may only take one or two medications, but the most heavily
medicated patient may take dozens.

In order for machine learning to make complex clinical decisions, such
tools will eventually need to be able aggregate information from data in
many different formats. One possible solution would be an ensemble of
classifiers which each work with a different data modality such as tables,
graphs, images, and natural language. Multimodal machine learning is
an active area of current research with great potential in the healthcare
field [1].

Although we demonstrate variant calling using Cromwell on Azure
for a public single patient dataset, the current inputs to our pipeline are a
larger set of sample VCFs resulting from PacBio’s human whole genome
sequencing workflow. We do not currently have access to the original
reads used to generate these VCFs. In future work, we would like to run
a modified Cromwell workflow which outputs results in GVCF format.
Unlike VCF files, GVCF files contain variant calling information about
all (including reference/non-variant) positions on the genome, grouped
into blocks of configurable size. VCF files only report confidently called
variants. In this work, we impute reference quality and depth scores
using the genome-wide average, akin to a GVCF with an exceptionally
large block size. Transforming our pipeline to use GVCF inputs would
simultaneously simplify post-processing of variants and improve the
quality of all data regarding reference calls.
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