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Fig. 1: Example VCF file, including the file header and variant call data. Fig. 2: Example synthetic FHIR data, generated using Synthea [1].

As genome sequencing becomes cheaper and more accurate, it is becoming increasingly viable to merge this data with electronic health information 
to inform clinical decisions. In this work, we demonstrate a full pipeline for working with PacBio sequencing data and clinical FHIR data, from initial 
data to tertiary analysis. The electronic health records are stored in FHIR – Fast Healthcare Interoperability Resource – format, the current leading 
standard for health care data exchange. For the genomic data, we perform variant calling on long read PacBio HiFi data using Cromwell on Azure. 
Both data formats are parsed, processed, and merged in a single scalable pipeline which securely performs tertiary analyses using cloud-based 
Jupyter notebooks. We include three example applications: exporting patient information to a database, clustering patients, and performing a simple 
pharmacogenomic study.

Our cloud-based pipeline contains the following steps:
1. Variant Calling: We first run a scalable cloud-based variant 

calling pipeline using "Cromwell on Azure" [2].
2. FHIR Data Generation: Synthetic FHIR patient data is generated 

using Synthea [1].
3. Deploy FHIR Server: A FHIR server is deployed to securely host 

patient data which can be accessed using an Azure API.
4. Upload FHIR Data: A script is run to upload all synthetic 

generated patient data to the FHIR server.
5. Deploy Sync Agent to Download FHIR Data: The "Sync Agent" 

[3] function app downloads data from the FHIR server and 
stores it in Parquet format. 

6. Extract FHIR Data: A script extracts the desired clinical 
information from the Parquet files into a data frame.

7. Merge VCF Files: Variant calls for all patients are merged into a 
single file for efficient processing.

8. Parse VCF Data: A script extracts the desired variant call 
information from the merged VCF file into a data frame.

9. Merge FHIR and VCF Data: The data frames containing patient 
clinical and genomic data are merged into a single data frame.

10. Analysis: Several potential downstream applications are 
demonstrated. Fig. 3: Overview of data processing pipeline, common to all demonstrated downstream applications.

Fig. 11: Sankey diagram showing distribution of patient treatments and outcomes.

Application #3 – Pharmacogenomic Study: The final application we demonstrated was a basic pharmacogenomic study to determine the effect of two 
different medication treatments on breast cancer patients’ survival rates. First, a custom Synthea module was designed which modelled a patient population 
where outcomes were only improved beyond the base 50% survival rate for patients who were prescribed Epirubicin and had a particular genetic variant, and 
for patients who were prescribed Doxorubicin and did not have the genetic variant. This model is depicted in Figure 5, and uses both clinical and genomic 
data. Below, Figure 11 shows a breakdown of patient variant presence, treatment type, and survival.

Fig. 10: Patient clusters using merged clinical and genomic data, resulting from several different clustering algorithms.

Application #2 – Patient Clustering: The second application we demonstrated was an exploratory clustering of our patient dataset using three different 
clustering methods: K-Means++, DBSCAN, and Spectral Clustering. There is no ground truth available, so this is only useful for discovering similarities 
between patients.

Fig. 9: Final data frame of merged clinical FHIR data and PacBio variant calling data.

Application #1 – Data Exportation: The first and simplest application we demonstrated was exporting the merged FHIR and PacBio data to a database for 
further analyses. We selected Azure Synapse Analytics as our database platform because it ensures scalability and reliability.

Fig. 4: High-level overview of Microsoft's "Cromwell on Azure" service, used to perform variant calling [2].

Fig. 5: Custom Synthea module which models breast cancer patients' survival rates as a function of their medications 
and genetics.

Fig. 7: Secure deployment process for an "Azure API for FHIR" server. Fig. 8: Deployment process for a "Sync Agent" which  downloads data from the FHIR server [3].

Fig. 6: Confidential computing configuration.

Cromwell is a workflow management system for running genomics analysis scripts at various scales, from a local 
machine or computing cluster to larger cloud instances. Cromwell was originally developed by the Broad Institute, and 
is used in the Genome Analysis Toolkit's (GATK) recommended "Best Practices" pipeline for genome analysis. 
"Cromwell on Azure" is a project developed by Microsoft that configures all the Azure resources necessary to run 
Cromwell workflows on the Azure cloud. The first stage of our pipeline uses Cromwell on Azure to perform variant 
calling on long read PacBio HiFi reads. Although this whole genome sequencing pipeline also calls structural variants, 
at the moment only small germline variants are used in downstream analyses. An overview of how Cromwell on Azure 
works is shown below, in Figure 4.

Synthea is a widely-used open source tool for generating realistic (but synthetic) patient data in FHIR format [1]. This 
enables researchers to work with realistic clinical datasets without worrying about any of the legal, ethical, or security 
concerns that would accompany working with real patient data. Synthea works by first using general census 
demographic data in combination with user-specified configuration information to generate a synthetic world 
population. Once this population has been generated, disease incidence and prevalence statistics are used in tandem 
with disease-specific models to simulate patients contracting a given disease and all subsequent interactions with the 
healthcare system that will be stored in clinical records. This information can then be exported in FHIR format. 

In addition to Synthea's default disease modules, for our third example pipeline application (see "Results") we created 
a custom Synthea module to model a simplified breast cancer patient cohort. A graphical depiction of this module is 
shown below, in Figure 5. For this cohort, patients had a default survival rate of 50%. Based on the combination of 
their genetics (the presence of a particular variant) and their prescribed medication (Epirubicin or Doxorubicin), their 
survival rate either remained the same or increased to 90%. This models the fact that medication effectiveness can 
depend upon the genetics of the patient involved.

In order to ensure that all data processing is secure, our pipeline works within a Jupyter notebook hosted on an Azure 
“Confidential Compute” virtual machine. Results are then made available on a local machine using SSH tunneling. This 
setup can be seen below, in Figure 6. Confidential virtual machines have security features such as secure boot, a 
virtual trusted platform module (vTPM), boot integrity monitoring, and virtualization-based security. Together, these 
features protect against persistent or advanced threats such as rootkits. Virtualization provides further security by 
isolating memory address spaces to remove any possibility of memory cross-contamination.

Ensuring the confidentiality of patient health information is paramount. In order to securely upload FHIR data to a 
server and later query this data, we must have some means of performing authentication. Azure Active Directory is a 
cloud-based identity and access management service which we selected to use for authentication purposes. After 
deploying a FHIR server, we added permissions for our notebook script to write data to the server, registering it with 
Azure Active Directory and providing it with a secret key (generated by Azure AD) as proof-of-identity. In order to 
upload data to the FHIR server, the notebook requests a secret token from Azure AD using its secret key, and then 
uses that token to POST resources to the FHIR server.

In order to perform data science applications with FHIR data, we first need to convert the hierarchical JSON data into 
tabular format. An existing open source tool called the “FHIR to Synapse Sync Agent” solves this problem by 
downloading FHIR data from the server and converting it to Parquet format. Figure 8 shows an overview of how the 
Sync Agent works. Parquet files store the same information as ordinary CSV (“comma-separated values”) or TSV 
(“tab-separated values”) files, but in a more efficient compressed manner. Data is stored in column-major order, which 
allows compression algorithms such as run length encoding, dictionary encoding, or delta encoding to be applied per 
column depending upon each column's format and values.

Once downloaded, we parse the Parquet FHIR data to retrieve relevant information and load it into a data frame. 
Although Parquet is already a tabular format, the converted data contains extraneous information which must be 
discarded. Furthermore, FHIR data pertaining to a single patient is stored in multiple resource types. These files (such 
as Patient, Medication, or Condition resources) must be parsed separately and the records associated with one 
another using the patient’s unique Medical Record Number (MRN). In the end, each row stores data for a single 
patient, and the numerous columns contain all desired information about that patient, extracted from the Parquet files. 
At this point the FHIR and PacBio data can be merged together, as shown in Figure 9.


