
Needletail: Scalable GPU-Accelerated Global Long Read Alignment

University of Michigan
EECS 570 - Parallel Computer Architecture

Undecided Group Name 1
(Authors Are Listed Alphabetically By Surname)

Tim Dunn
timdunn@umich.edu

Nathan Ozog
ozog@umich.edu

Sanjay Singapuram
singam@umich.edu

Nicholas Wendt
nwendt@umich.edu

I. ABSTRACT

The Needleman-Wunsch alignment algorithm was devel-
oped in 1970 as a solution to the global alignment problem [1].
This dynamic programming solution, and its derived variants,
remain in widespread use today, most commonly to compare
biological sequences. Alignment is a compute intensive pro-
cess, accounting for substantial portions of industry standard
genomics tools such as Minimap2 (33.2% runtime) and BWA-
MEM (28.4% runtime). In this paper we present Needletail [2],
a scalable GPU accelerated long read alignment approach to
Needleman-Wunsch. We classify long reads as a query and
target length greater than or equal to 2.5kbp. For long reads
Needletail has shown 226.54× speedup over an elementary
CPU implementation, 19.68× speedup over Parasail [3], and
3.57× over GASAL2 [4].

II. INTRODUCTION

The Needleman-Wunsch algorithm is primarily applied in
bioinformatics for pairwise alignment of protein or nucleotide
sequences, particularly when the quality of global alignment
is application-critical.

A. Applications in Bioinformatics

The most notable application of Needleman-Wunsch is the
NW-like alignment step in Minimap2 [5], one of the popular
genetic sequence alignment tools in use today. Minimap2
utilizes a vectorized dynamic programming strategy similar
to that of Parasail [3], which will serve as our parallel
CPU baseline. While Minimap2 is flexible enough to support
application-specific parameters, in addition to the dynamic
programming matrix and backtrack steps, this was determined
to be beyond the scope of our project. We have developed
a highly-scalable parallel GPU-based dynamic programming
solution for long read alignment.

B. Base Algorithm Overview

First an N by M matrix is initialized by filling in the first row
with xi = i · gap score, i ε [0, tlen+ 1). Similarly, the first
column is initialized with yi = i ·gap score, i ε [0, qlen+1).
tlen and qlen refer to the target and query string lengths,
respectively. The dynamic programming algorithm then begins
with cell index (1, 1) and continues left to right, row-by-row,
until the bottom right cell has been computed. Each cell is

computed with the following, where S is the application’s
similarity matrix, D the deletion score, and I the insertion
score:

Mi,j = max

Mi−1,j−1 + S(Q[i], T [j])

Mi,j−1 +D

Mi−1,j + I

(1)

Once the dynamic programming matrix has been filled,
the backtrack step begins. First, the bottom right value
(Mqlen,tlen) is saved, as this represents our optimal alignment
score. Next, we perform the backtracking algorithm to find
the optimal alignment between the query and reference strings.
Starting from Mqlen,tlen, until we reach the top left cell (M0,0)
we perform:

/ / Match .
i f (M(i , j) == M(i −1, j −1) + S (Q[i −1] , T [j −1])) {

Q Alignment = Q[i −1] + Q Alignment
T Alignment = T [j −1] + T Alignment
i = i−1
j = j−1

}
/ / I n s e r t i o n .
e l s e i f (M(i , j) == M(i −1, j) + I) {

Q Alignment = Q[i −1] + Q Alignment
T Alignment = ”−” + T Alignment
i = i−1

}
/ / D e l e t i o n .
e l s e {

Q Alignment = ”−” + Q Alignment
T Alignment = T [j −1] + T Alignment
j = j−1

}

After the backtrack step has completed we are left with two
strings that represent the optimal alignment for the query and
target sequences. Note, it is possible for multiple paths to result
in the same maximal alignment score. In such an instance,
all paths are considered optimal or correct. For validating
correctness, we ensure our model follows the same path as our
elementary CPU implementation. The key takeaways from the
algorithm, with respect to its acceleration, are:

• The memory requirement is O(qlen · tlen).
• Serial runtime is O(qlen · tlen).
• The backtrack step runtime is O(tlen+ qlen)
• The backtrack step has 3 possible directions at each cell.

1

mailto:timdunn@umich.edu
mailto:ozog@umich.edu
mailto:singam@umich.edu
mailto:nwendt@umich.edu

Fig. 1: Wavefront Parallelism

C. Smith–Waterman and Banding

Smith–Waterman and Needleman-Wunsch are very simi-
lar in their modeling, and we will briefly explain how our
model could be adapted to suit SW applications. For matrix
initialization: instead of a gap-score dependent first row and
column, SW sets both to zero. Scoring: SW does not allow
negative scoring and instead clamps values to zero if they
would otherwise be negative. Traceback: SW only backtracks,
starting from the bottom right cell, until a zero is encountered.

A popular optimization is to enable banding, where cells
outside some bandwidth k off the diagonal of the matrix are
ignored. A problem with this approach, when targeting optimal
global alignment, is that it is plausible this alignment does
not reside within this band. For the purposes of this GPU
implemenation we did not explore banding.

III. DESIGN

To write an efficient GPU implementation we will walk
through several optimizations. These relate to algorithmic
optimizations to exploit parallelism, and hardware-specific op-
timizations with respect to GPU execution of our design. Note
that while our design is targeted towards CUDA specifically,
an OpenCL implementation is certainly possible with language
modifications. All of the ideas exhibited in this section will
also work for an OpenCL design.

A. The Wavefront Model

A key algorithmic optimization to notice is how “Read-After
Write” (RAW) hazards are represented in Needleman-Wunsch.
Any given cell requires the cells (i− 1, j − 1), (i, j − 1), and
(i − 1, j) to be completed before proceeding. This allows us
to imagine optimal parallelism waves depicted in Figure 1.

In this small example we do not achieve much parallelism.
However, standard matrix sizes for most long read global
alignment implementations are on the order of 1000 to 25000
for each dimension [6], [7]. Assuming there are sufficient
worker threads available (which should always be the case
for a GPU), we can transform the runtime from O(qlen · tlen)
to O(tlen+ qlen).

A downside to this approach is that the irregular strided
memory access pattern is detrimental to GPU memory
throughput. As memory coalescing is not exhibited for either
reads or writes, and memory transactions are completed per-
warp, only 1

32 of the available memory bandwidth will be used

Fig. 2: Sheared Matrix Transformation

Fig. 3: Full Sheared Matrix

to send useful information. In the next section we will address
how to transform our memory space to exhibit perfect GPU
memory coalescing for both reads and writes.

B. The Shear Factor

We can offset our matrix by an i-offset relative to its j index
to place all reads for a compute band within a contiguous
region of memory. The mapping from a given cell to its
transformed counterpart in the sheared matrix, along with its
RAW dependencies, are shown in Figure 2.

Note this mapping allows sequential threads to read from
sequential memory addresses. Since GPUs must coalesce
reads into large memory requests, this means that all of the
information read from global memory for a given request will
be useful during the current wavefront computation. A full
sheared matrix is displayed in Figure 3.

Although storing our data in sheared matrix format signif-
icantly improves memory throughput, in its most naive form
shearing will waste substantial quantities of memory. In the
figure above, we require (tlen + qlen + 1) · (tlen + 1) ·
sizeof(int) bytes to store only (qlen+ 1) · (tlen+ 1) useful
values. When tlen ≈ qlen (as is typically the case for global
alignment), half of the available memory is wasted. Referring
back to our transformation mapping in Figure 2, we can see
that our DP computation depends only on the previous two

2

Fig. 4: Sliding Window

Fig. 5: New Sheared Matrix

rows. This space optimization assumes we are storing the
information necessary for backtracking elsewhere, which will
be addressed in Section III-E.

Using a sliding window of three rows, we can also leverage
shared memory to reduce the number of global memory
accesses. Observe that the middle row of our sliding window
has overlap: cell X requires a value that cell Y also requires.
Performing a coalesced read into shared memory prior to
computation reduces our global memory bandwidth by 2×
for this row. Once a row is computed, the buffer pointers are
passed in a circular fashion (0 to 1, 1 to 2, 2 to 0) in preparation
for computing the next row.

C. Improving The Sheared Matrix

It was observed that when tlen 6= qlen, the sheared matrix
can be more compactly represented by storing the longer
of t and q along the first dimension and the shorter of t
and q along the second. Figure 5 demonstrates this modified
transformation, an improvement in space requirements over
Figure 3. To avoid complications in indexing, kernel logic,
and matrix computation resulting from this conditional swap,
it was performed prior to kernel execution. This allows the
kernel to remain oblivious to the optimization and assume
tlen ≥ qlen.

D. Work Allocation

Initial profiling of our kernel revealed that kernel launching
accounted for over 50% of our runtime. To fix this, we re-
designed our high-level parallelization strategy and assigned
more work to each kernel. Figure 6 demonstrates our initial
approach, where many blocks (shown in various shades of

Fig. 6: Work Allocation, old (left) and new (right)

blue and green) are responsible for computing a single row
of the matrix simultaneously. Each thread computes a single
element, and then a grid-wide synchronization (shown as a red
line) must be performed to avoid race conditions. Both implicit
kernel-relaunching synchronization and utilizing CUDA “Co-
operative Groups” were found to add approximately the same
overhead, which was unacceptably high.

The simplest way to increase the amount of work per
kernel launch would be to compute the entire matrix using a
single block, proceeding in row-major order. This eliminates
synchronization overhead entirely, but is fairly slow due to
repeated global memory accesses.

To remedy this, we utilized Shared Memory. Unfortunately,
GPU Shared Memory is a limited resource (maximum 49152
bytes per SM), so we cannot store the three rows required for
our sliding window approach (see Section III-B for details)
if the matrix width (min(tlen, qlen)) exceeds 49152/(3 ∗
sizeof(int)) = 4096 elements.

Instead of computing all columns of the matrix before
proceeding to the next row, our kernel block strides across the
matrix and computes exactly 4096 elements per row, storing
the results in Shared Memory. The remaining columns in the
full sheared matrix are dependent upon only the last column
which has just been computed, and so this column is stored in
Global Memory. This pattern is shown in Figure 6 for a single
block: striding across until 4096 elements are computed, doing
so for all rows of those selected columns, and repeating this
for the next chunk of 4096 columns until the entire matrix has
been computed. Values stored in Global Memory are shown
in red; all other computation occurs in Shared Memory, and
no grid-wide synchronization is necessary.

E. Backtrack Matrix Storage

As noted previously, the asymptotic complexity of memory
storage required for backtracking (O(qlen · tlen)) exceeds
the asymptotic storage requirements of computing the matrix
(O(qlen + tlen)). Therefore, in order to decrease the total
memory required to perform alignment (and therefore increase
the number of simultaneously executing alignment kernels),

3

Fig. 7: Coalescing Output Writes

we spent considerable effort reducing the constant factor in
memory storage requirements.

Ordinarily, a full scoring matrix is computed during the
forward DP step, and the backtracking step is performed as
described in Section II-B using the scoring matrix. We noted,
however, that the parent of a given cell (see Figure 2, the
cell which will be traversed next during the backtracking
step) is already known during computation, since it’s the
cell which results in the maximum score (as calculated in
Equation 1). Therefore, for each cell in the matrix, we need
only store which of the three possible cells was the parent
cell. Thus, instead of storing a 4-byte integer for each cell,
we can store this information in a 2 bit pointer, representing
a 16× reduction in memory storage requirements. At the
time of writing, our code stores this information in one byte
for simplicity, still retaining a 4× improvement in storage
requirements.

Our initial implementation output this pointer matrix
naively, in the expected format. Note that due to the inher-
ent wavefront parallelism structure, writing information in
this manner will lead to many uncoalesced writes to global
memory, which accounted for 50% of our kernel’s execution
time. Figure 7 shows how this structure can be improved
upon to allow for greater memory throughput, although it does
significantly increase the complexity of accessing the correct
memory addresses for each cell during the backtracking cal-
culation.

F. Modified Backtracking

Because backtracking is not GPU friendly due to its substan-
tial branching and unique memory access patterns, we have
left this compute to the host. A powerful CPU core will fare
much better as there is no inherent parallelism. Each backtrack
step is dependent on the last and we can utilize vastly more
powerful CPU prefetching/branch prediction mechanisms than
our GPU has to offer. Because we have modified the way the
backtrack matrix is stored, relative to II-B, we need to utilize
the closed form function:
i j t o z (i , j , t l e n , q l e n) {

z = 0 ;
j p i = j + i ;
i f (j p i <= q l e n)

z = j p i * (j p i + 1) / 2 + i ;
e l s e i f (j p i <= t l e n)

z = q l e n * (q l e n + 1) / 2
+ (q l e n + 1) * (j p i − q l e n) + i ;

e l s e
z = (t l e n + 1) * (q l e n + 1)
− (t l e n + q l e n + 1 − j p i)
* (t l e n + q l e n + 2 − j p i) / 2

+ i − (j p i − t l e n) ;
re turn z ;

}

This function allows to to map (i, j) from our original,
untransformed, matrix to our compressed form as outlined
in Figure 7. The original matrix is split into three matrix
segments: top left triangle where the compute bandwidth is
increasing with each compute iteration, a middle segment
where the compute bandwidth is held constant, and the bottom
right triangle where the compute band is shrinking. It is
important to note: this function only applies if qlen is less
than or equal to tlen. For a generalized application our GPU
algorithm swaps query and reference, prior to compute, if this
condition is not met. Once backtrack is completed we swap
the aligned strings back to their original configuration.

G. Custom GPU Memory Management

The CUDA operations normally used for memory manage-
ment synchronize all other CUDA operations [8]. For example,
if cudaMalloc() is called to allocate device memory for
a new kernel launch, the function will block the caller and
synchronize all running kernels (even if they are in different
streams) before performing the allocation. Since our imple-
mentation allocates and deallocates memory on an alignment-
by-alignment basis (to efficiently handle varying target and
query lengths), this behavior greatly reduces concurrency and
hurts performance.

To alleviate this issue, our implementation allocates two
large pools of memory at startup: one of device memory for
kernel use and one of pinned, host memory for returning
completed matrices. We then use pool manager objects to
handle mallocs and frees within each of these pools. This way,
we can avoid using implicitly-synchronizing CUDA memory
operations while kernels are in-flight.

The pool manager’s free() implementation simply pushes
the given pointer into a list of pending frees and sets a
condition variable to indicate that a pending free exists (see
Listing 1).

Listing 1: Pseudocode for free()
f r e e (p t r) {

mutex lock (f r e e s l o c k) ;
f r e e s . push back (p t r) ;
c o n d s i g n a l (f r e e s e x i s t) ;
mutex unlock (f r e e s l o c k) ;

}

Our malloc() implementation first pushes any pending
frees into the pool manager’s free-segment-tracking data struc-
tures. Next, it attempts to find a best-fit free segment in the
memory pool. If this fails, the caller is blocked on a condition
variable so that it waits until free() is called by another
thread. Once this happens, the thread in malloc() updates
the segment data structures and reattempts the allocation.
When a segment of pool memory is successfully reserved,
the function returns a pointer to the segment. Listing 2 is
pseudocode for our malloc() implementation.

4

CPU Intel Xeon E5-2697 v3 @ 2.60GHz (x2)
Logical Cores 28
L1 I&D Cache 32 KB Instruction — 32 KB Data

L2 Cache 256 KB
L3 Cache 35.8 MB
Memory 65.7 GB

GPU NVIDIA TITAN Xp @ 1.58GHz
CUDA Version 10.1
CUDA Cores 3840

Memory 12.2 GB GDDR5X
Memory Speed 11.4 Gbps

Memory Bandwidth 547.7 GB/s
Bus Support PCIe 3.0

TABLE I: Testing Infrastructure

Listing 2: Pseudocode for malloc()
ma l l oc (s i z e) {

mutex lock (m a l l o c l o c k) ;

mutex lock (f r e e s l o c k) ;
f r e e p e n d i n g f r e e s () ;
mutex unlock (f r e e s l o c k) ;

do {
p t r = g e t b e s t f i t (s i z e) ;
i f (p t r == NULL) {

mutex lock (f r e e s l o c k) ;

whi le (f r e e s . empty ())
cond wa i t (f r e e s e x i s t , f r e e s l o c k) ;

f r e e p e n d i n g f r e e s () ;

mutex unlock (f r e e s l o c k) ;
}

} whi le (p t r == NULL) ;

mutex unlock (m a l l o c l o c k) ;
re turn p t r ;

}

H. SM Utilization

To increase streaming multiprocessor (SM) utilization we
utilize a block size of 512. With this block size we allow four
blocks to run on a single SM before we hit the hardware limit
of 2048 threads per SM. This grants our SMs enough contexts
to hide memory accesses and block-level synchronization
operations. Block sizes greater than 512 led to substantial
performance degradation in our analysis (≈ 1.25− 2× slower
runtime depending on matrix size).

IV. METHODOLOGY

A. Testing Procedure

All testing procedures are conducted on server grade hard-
ware as seen in Table I. In our analysis we utilize a generic
“-1” insertion or deletion penalty for all scoring algorithms.
We fix a batch size of 10k matrices to compute for every
input batch. Each batch has varied query and target lengths
(qlen/tlen) to examine how each algorithm performs under
different circumstances. Reported runtimes include both com-
putation and backtracking.

B. Parasail

We compare Needletail to Jeff Daily’s vectorized CPU
implementation, Parasail [3], as a comparison to efficient CPU

implementations of Needleman-Wunsch. Parasail was adapted
to fit our testing infrastructure to eliminate any variables relat-
ing to I/O. Parasail is able to utilize its vectorized algorithm
to provide different speedups relative to matrix cell bitwidths.
In our testing we fix Parasail to 32-bit integers to reduce
confounding variables because our GPU implementation, in its
current state, only performs operations on 32-bit integers. It is
crucial to note, Parasail’s performance will scale linearly based
on the bitwidth of the vector operands. As expected, with
8-bit integers Parasail runs 4× faster than its 32-bit integer
counterpart.

Prior to matrix computation, it is reasonable to estimate an
upper bound on the maximum alignment score in any cell.
This would enable selecting the minimally sufficient vector
operand width, in order to increase performance. However, in
practical applications 8-bit integers are unlikely to be used, so
we place them out of the scope of this comparison.

C. GASAL2

We utilize the GASAL2 testbench provided on the master
branch of the GASAL2 repository. Global alignment mode is
set and the appropriate scoring penalties to match Needletail
are assigned. Our input batch generation software is modified
to pre-process identical batches in fastq format. Using the 56
logical threads in our testing infrastructure, we begin filling in
data-table cells one by one. If GASAL2 fails due to running
out of GPU memory we reduce the number of outstanding
GPU streams, to the maximum value possible, before GPU
memory is exhausted. In addition, the GASAL2 binary is
remade for each row of the data table. This is a result of
compiler-time optimizations made by GASAL2, based on the
maximum possible query length.

D. Correctness Verification & Testing Infrastructure

We utilize a naive CPU implementation of Needleman-
Wunsch as a correctness checking mechanism. Both Needletail
and this elementary application are guaranteed to follow the
same backtracking paths in circumstances where multiple
optimal alignments are possible.

Testing and benchmarking batches were created using our
custom string generation software called Batchgen. Batchgen
works by generating arbitrary genomics strings for alignment
given input parameters such as: target length ranges, query
length ranges, number of targets, number of queries per
target, etc. Generally, alignment occurs once a heuristic has
determined a region where a query is expected to align. Our
simulated alignment does not follow this model, however the
work done is identical.

V. RESULTS

A. Needletail vs Parasail

Observe runtime comparisons with respect to Parasail in
Figure 8. In this comparison we note Parasail’s efficiency
for small matrix sizes. Because Parasail does not have to
transfer data over the high-latency PCIe bus, we see a sub-
stantial performance benefit to using Parasail for short read

5

Fig. 8: Needletail vs Parasail Speedup

Fig. 9: Needletail vs GASAL2 Speedup

alignment vs Needletail. As discussed previously, for these
smaller matrices we can employ smaller bitwidths as needed
for increased CPU-SIMD parallelism. Parasail would be best
utilized for GASAL2 or Needletail’s spare host CPU cycles.
Both algorithms have idle host treads while GPU compute
occurs. For maximum throughput it may be worth exploring a
heterogeneous solution by applying Parasail in these circum-
stances.

B. Needletail vs GASAL2

GASAL2 comparison with Needletail is observed in Fig-
ure 9. Likewise with Parasail, GASAL2 is undeniably better
for short read alignment. GASAL2 utilizes a global alignment
algorithm that allocates a single GPU thread for one entire
matrix. This approach is fantastic for these matrix sizes as it
fully utilizes the SMs on the GPU, the PCIe bus, reduces the
compute space to registers, and minimizes synchronization.
However, we analyze that this approach does not scale well.
It places unnecessary burden on the programmer for long read
alignment. One must ensure not to launch enough threads
to exhaust GPU memory resources. In such a scenario, the
number of outstanding matrix computations plummets and
per-thread matrix computation becomes a bottleneck. Here,
a vectorized approach like Needletail or Parasail would be
preferable. Note that as matrix size increases GASAL2 has to
limit its host threads, and outstanding GPU streams, to reduce
memory exhaustion.

C. Takeaways

Much like everything in computer science, a heterogeneous
solution is the best approach. Prior computation should de-
termine which algorithm to utilize. GASAL2 is substantially
better than both Needletail and Parasail for small alignment.
However, scalability issues plague GASAL2 because of its

underlying implementation. Per-thread matrix computation
performs exceptionally well for these small alignments, incurs
no synchronization overhead, and utilizes GPU resources more
efficiently. However, as matrix size increases to long read
alignment magnitude, storing a matrix per compute thread is
impractical as underlying hardware memory limitations are
met. It is here we find Needletail’s application and propose a
heterogenous solution to alignment: GASAL2-like algorithms
for short reads and Needletail-like algorithms for long reads.

VI. RELATED WORK

Genomics acceleration has become popular in the last 5
years. The two primary avenues researchers have focused on
is GPU and FPGA acceleration.

GPU acceleration grants programmers substantial flexibility
and scalability in their designs, bugs are easier to fix and
test, and adoption into applications is easier. GPU based
algorithms are aided by vast amounts of money and R&D for
GPU hardware. A few notable GPU genomics applications
that were not explored are Parabricks [9] and NVBIO [10].
Unfortunately Parabricks is closed source so we cannot explore
a possible comparison with its underlying algorithm. NVBIO
was chosen not to be compared against as GASAL2 is shown
to have better performance [4]. A more exhaustive study would
have larger breadth than the two comparisons we explored in
this paper.

FPGA and ASIC acceleration has also proven very promis-
ing with DRAGEN [11], Darwin [12], GenAx [13], and
ERT [14]. Designs such as these have shown substantial
performance benefits over their GPU counterparts, however,
their production and adoption is significantly more difficult.
ASIC designs are very costly and current market demand does
not justify their cost. FPGA designs are more flexible but
are still plagued by long design runs for even slight design
changes. Cloud computing services such as AWS have given
these custom designs more flexibility, but mass adoption has
not yet occurred.

VII. CONCLUSION

As the volume of raw genomics data grows, finding in-
creasingly faster solutions to common secondary analysis algo-
rithms will be a catalyst for the next generation of healthcare.
Higher quality long read sequencers will place increasing im-
portance on their secondary analysis. In this term-paper we ex-
hibit techniques programmers can employ to write hardware-
conscious algorithms for the increased long read alignment
throughput. We open-source our project, for future adaptations,
here https://github.com/nate-ozog/eecs570 project 3. It
is our hope that the methods exhibited for increased long
read alignment throughput can find their way into de facto
algorithms such as: BWA-MEM2 and Minimap2 [5], [15].

6

https://github.com/nate-ozog/eecs570_project_3

VIII. CONTRIBUTIONS

Tim Dunn: Optimization and implementation of core com-
pute kernel (memory usage, tiling, write coalescing, algorithm
modifications).

Nathan Ozog: Batching and multithreading support, core
compute kernel, base serial algorithm for verification.

Sanjay Singapuram: Initial batching and multithreading
support, GASAL2 benchmarking.

Nicholas Wendt: Batching and multithreading support,
memory pool management, Parasail implementation, testing
infrastructure.

REFERENCES

[1] S. B. Needleman and C. D. Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two proteins,”
Journal of molecular biology, vol. 48, no. 3, pp. 443–453, 1970.

[2] “White-throated needletail,” https://en.wikipedia.org/wiki/White-
throated needletail.

[3] J. Daily, “Parasail: Simd c library for global, semi-global, and local
pairwise sequence alignments,” BMC bioinformatics, vol. 17, no. 1,
p. 81, 2016.

[4] N. Ahmed, J. Lévy, S. Ren, H. Mushtaq, K. Bertels, and Z. Al-
Ars, “Gasal2: a gpu accelerated sequence alignment library for high-
throughput ngs data,” BMC bioinformatics, vol. 20, no. 1, p. 520, 2019.

[5] H. Li, “Minimap2: pairwise alignment for nucleotide sequences,” Bioin-
formatics, vol. 34, no. 18, pp. 3094–3100, 2018.

[6] S. L. Amarasinghe, S. Su, X. Dong, L. Zappia, M. E. Ritchie, and
Q. Gouil, “Opportunities and challenges in long-read sequencing data
analysis,” Genome Biology, vol. 21, no. 1, p. 30, Feb 2020. [Online].
Available: https://doi.org/10.1186/s13059-020-1935-5

[7] M. O. Pollard, D. Gurdasani, A. J. Mentzer, T. Porter, and M. S.
Sandhu, “Long reads: their purpose and place,” Human Molecular
Genetics, vol. 27, no. R2, pp. R234–R241, 05 2018. [Online]. Available:
https://doi.org/10.1093/hmg/ddy177

[8] S. Rennich, “Cuda streams and concurrency.” [Online]. Available:
developer.download.nvidia.com/CUDA/training/StreamsAndConcurrenc
yWebinar.pdf

[9] “Parabricks,” https://developer.nvidia.com/nvidia-parabricks.
[10] “Nvbio,” https://developer.nvidia.com/nvbio.
[11] R. McMillen and M. Ruehle, “Bioinformatics systems, apparatuses, and

methods executed on an integrated circuit processing platform,” http
s://www.google.com/patents/US9014989, Apr. 21 2015, uS Patent
9,014,989.

[12] Y. Turakhia, G. Bejerano, and W. J. Dally, “Darwin: A genomics co-
processor provides up to 15,000 x acceleration on long read assembly,”
ACM SIGPLAN Notices, vol. 53, no. 2, pp. 199–213, 2018.

[13] D. Fujiki, A. Subramaniyan, T. Zhang, Y. Zeng, R. Das, D. Blaauw,
and S. Narayanasamy, “Genax: A genome sequencing accelerator,” in
2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2018, pp. 69–82.

[14] A. Subramaniyan, J. Wadden, K. Goliya, N. Ozog, X. Wu,
S. Narayanasamy, D. Blaauw, and R. Das, “Accelerating maximal-
exact-match seeding with enumerated radix trees,” bioRxiv, 2020.
[Online]. Available: https://www.biorxiv.org/content/early/2020/03/25/2
020.03.23.003897

[15] V. Md, S. Misra, H. Li, and S. Aluru, “Efficient architecture-
aware acceleration of bwa-mem for multicore systems,” arXiv preprint
arXiv:1907.12931, 2019.

7

https://doi.org/10.1186/s13059-020-1935-5
https://doi.org/10.1093/hmg/ddy177
developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf
developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf
https://developer.nvidia.com/nvidia-parabricks
https://developer.nvidia.com/nvbio
https://www.google.com/patents/US9014989
https://www.google.com/patents/US9014989
https://www.biorxiv.org/content/early/2020/03/25/2020.03.23.003897
https://www.biorxiv.org/content/early/2020/03/25/2020.03.23.003897

	Abstract
	Introduction
	Applications in Bioinformatics
	Base Algorithm Overview
	Smith–Waterman and Banding

	Design
	The Wavefront Model
	The Shear Factor
	Improving The Sheared Matrix
	Work Allocation
	Backtrack Matrix Storage
	Modified Backtracking
	Custom GPU Memory Management
	SM Utilization

	Methodology
	Testing Procedure
	Parasail
	GASAL2
	Correctness Verification & Testing Infrastructure

	Results
	Needletail vs Parasail
	Needletail vs GASAL2
	Takeaways

	Related Work
	Conclusion
	Contributions
	References

