
Dunn et al.

METHOD

nPoRe: n-Polymer Realigner for improved

pileup-based variant calling
Tim Dunn*, David Blaauw, Reetuparna Das and Satish Narayanasamy

*Correspondence:

timdunn@umich.edu

University of Michigan, Ann Arbor,

USA

Full list of author information is

available at the end of the article

Abstract

Despite recent improvements in nanopore basecalling accuracy, germline variant

calling of small insertions and deletions (INDELs) remains poor. Although

precision and recall for single nucleotide polymorphisms (SNPs) now exceeds

99.5%, INDEL recall remains below 80% for standard R9.4.1 flow cells. We show

that read phasing and realignment can recover a significant portion of false

negative INDELs. In particular, we extend Needleman-Wunsch affine gap

alignment by introducing new gap penalties for more accurately aligning repeated

n-polymer sequences such as homopolymers (n = 1) and tandem repeats

(2 ≤ n ≤ 6). At the same precision, haplotype phasing improves INDEL recall

from 63.76% to 70.66% and nPoRe realignment improves it further to 73.04%.

Keywords: germline variant calling; alignment; n-polymer; homopolymer; short

tandem repeat; copy number; nanopore sequencing; variable gap penalty

Background

Nanopore Variant Calling

As long read technologies have matured and basecalling accuracy has increased to over

99%, their popularity has grown accordingly [1, 2]. Long reads are essential for spanning

repetitive regions and unambiguously mapping reads. Last year, the first gapless human

genome sequence was constructed by the T2T consortium by combining PacBio HiFi and

ONT nanopore long reads [3]. Nanopore sequencing in particular has gained popularity

due to its impressive read lengths, low cost, real-time results, and direct calling of base

modifications [4, 5, 6].

The two current leading nanopore variant callers are Clair3 (developed by the HKUCS

Bioinformatics Algorithm Lab) and PEPPER-Margin-DeepVariant (a collaboration be-

mailto:timdunn@umich.edu

Dunn et al. Page 2 of 25

tween UCSC and Google Health, hereafter referred to as PEPPER) [7, 8]. Both tools have

converged on a similar variant calling pipeline: basecalling, read alignment, pileup-based

variant calling (using pileup summary statistics), read phasing, and full-alignment variant

calling (using all read information).

Despite posting impressive F1 scores (≥ 0.995) for SNP calling, nanopore variant callers

struggle with accurately identifying INDELs in low-complexity regions [8, 9, 7]. Most

recent nanopore variant calling advances in this area have come from improvements in

machine learning and data representation. For example, the move from prior work Clair-

voyante [10] to Clair [9] involved “an entirely different network architecture and learn-

ing tasks”. Clair3 then split the model into a pileup caller to filter out the noise and a

higher-dimensional full-alignment caller to make the more difficult decisions [7]. PEPPER

examined sorting reads by haplotype and a new architecture, and DeepVariant explored nu-

merous possible data representations for final calling [8, 11]. Orthogonally, we show that

improved INDEL calling performance can be achieved through better read alignment by

introducing novel gap penalties for homopolymers and tandem repeats, or “n-polymers”.

Figure 1 The same reads, aligned by MiniMap2 and nPoRe, viewed in IGV [12]. Colored lines

represent substitutions, black lines represent deletions, and purple vertical bars indicate insertions. Note

that nPoRe alignments contain more INDELs than substitutions, and the starts of these INDELs are

more consistently placed.

Nanopore Read Alignment

In order to maximize the accuracy of pileup-based variant calling, reads should be aligned

such that actual mutations are always aligned to the same location, despite sequencing

Dunn et al. Page 3 of 25

errors. We find that simply using traditional affine gap penalties is not ideal because gap

penalties Gopen and Gextend are static, regardless of context [13]. For example, although our

dataset consisted of only 0.8% INDEL errors, homopolymers of length 10 contained an

INDEL error 41.8% of the time. Without lowering the INDEL penalty in the context of

repetitive sequences, there is a mismatch between the likelihood and alignment penalty of

common sequencing errors. This has an outsized impact on fine-grained read alignment,

often at the expense of consistently aligning actual mutations.

Figure 1 demonstrates a specific example where static INDEL gap costs cause poor align-

ment concordancy in low-complexity regions. Reads are identical in the two pileups shown;

only the alignments differ. In this example, two adjacent homopolymers are basecalled

with inconsistent lengths. nPoRe recognizes that these two events were most likely inde-

pendent, and separates them into two homopolymer length mis-calls/variants. In contrast,

MiniMap2 merges two INDELs whenever possible, or aligns homopolymer length differ-

ences as SNPs when one homopolymer is lengthened and the other is shortened, resulting

in inconsistent alignment. According to the truth VCF, the first homopolymer of all As had

a single deletion. Looking at the third base in the coverage graphs in Figure 1, we can see

that nPoRe placed a deletion here for a much larger fraction of reads than MiniMap2.

The likelihood of incorrectly basecalling an INDEL within a homopolymer increases

significantly as homopolymer length increases. Figure 2a shows the confusion matrix for

actual and basecalled homopolymer lengths in our dataset. This same trend is visible for

tandem repeats of longer length, though to a lesser extent (Figure 2b).

Figure 2 a) 1-polymer and b) 3-polymer confusion matrices of expected and actual n-polymer lengths

(in percent)

Dunn et al. Page 4 of 25

Figure 3 a) SNP and b) INDEL germline small variant calling accuracy of baseline clair3-pileup and

clair3-full

Nanopore INDEL Accuracy

Nanopore-based variant callers have historically struggled with INDELs, particularly with

recall. Although Clair3 achieves 99.67% precision and 99.60% recall for SNP variant call-

ing, it achieves only 90.86% precision and 64.73% recall for INDELs [7]. PEPPER v4

performs similarly, with 99.61% and 99.62% SNP precision and recall but just over 90%

precision and 60% recall for INDELs [8]. The most recent evaluation available shows PEP-

PER v7 achieving 93% precision and 76% recall for INDELs, at 85× coverage [14].

Our own evaluation confirms these findings, and furthermore attributes the loss of IN-

DEL recall to the first pileup-based variant calling step. Figures 3a and 3b show SNP and

INDEL precision recall curves, respectively, for both Clair3’s pileup and full-alignment

models. Note that although the more complex full-alignment model significantly improves

precision, it cannot improve recall as dramatically; only variant calls and low-confidence

reference calls from the previous pileup-based step are considered.

Figure 4 Sankey diagrams demonstrating a) proportion of pileup-based variant calling errors and

b) true INDEL variants contained within designated n-polymer regions of chr20-22 in GM24385.

Dunn et al. Page 5 of 25

Although substitutions comprise a majority (83.75%) of the actual small germline vari-

ants in our dataset, INDELs account for 92.36% of the pileup-based false negative and

80.79% of false positive errors. Figure 4a shows that of these errors, 92.29% occur within

n-polymer regions, despite n-polymer regions covering just 37.07% of evaluated regions.

By improving the alignment of reads in these small n-polymer regions, we can have a

significant impact on overall variant calling accuracy.

Ground truth INDEL mutations are over-represented in n-polymer regions as well

(79.64% of all INDELs). This is because Short Tandem Repeat (STR) variation is a com-

mon form of mutation due to strand slippage during DNA replication, resulting in one or

more copies of a repeated unit being gained or lost. We define copy number INDELs as

n-polymers (3+ exact copies of the same repeat unit), with a differing number of copies

from the expected reference. For example, AAAA→AAAAA and ATATAT→ATAT meet this

definition, but ATAT→ATATAT, AATAATAAAT→AATAAT, and ATATAT→ATATA do not. De-

spite our relatively strict definition of n-polymer copy number INDELs, however, 65.82%

of all INDELs met this classification (Figure 4b). nPoRe’s algorithm is directly designed

to reduce alignment penalties for n-polymer copy number INDELs and improve alignment

in low-complexity regions.

Related Work

Variable gap penalties have been around for a long time. In 1995, Thompson first intro-

duced per-position gap opening and extension penalties [15]. Since then, the sub-field of

homologous protein sequence alignment has made extensive use of variable gap penalties

(PIMA [16], FUGUE [17], and STRALIGN [18]) due to a high correlation between INDEL

likelihood and the existence of protein secondary structures such as α-helices and β-strands.

SSALN was the first to use empirically-determined penalty scores (an approach similar to

our own) [19], and SALIGN greatly increased the flexibility of the gap penalty function,

although with a corresponding increase in computation [20]. Unfortunately, none of the nu-

merous extensions these earlier works made to traditional Needleman-Wunsch alignment

are directly applicable to the observed problem of long read n-polymer alignment.

Affine gap penalties belong to a larger class of “convex” gap penalties, which also in-

cludes piecewise linear and logarithmic gap penalties [21]. These more complex alterna-

tives solve a different problem: reliably grouping several medium-sized gaps into one larger

gap. They do this by decreasing the penalty for gap extension with the length of the gap,

Dunn et al. Page 6 of 25

and are commonly used for accurate alignment of large structural variants [22]. Such con-

vex gap penalties do not solve the issue of fine-grained read alignment because they are still

context-agnostic and at short INDEL lengths are highly similar to an affine gap penalty.

Several works have explored proper alignment of Short Tandem Repeats (STRs), al-

though most function as INDEL variant callers rather than read realigners [23, 24, 25].

More recently, machine learning based approaches for final variant calling have outper-

formed these earlier statistical approaches [8, 11, 10, 26]. Several newer works do focus

on read realignment, however. ReviSTER is one such tool for revising mis-aligned/mapped

reads through reference reconstruction with local assembly, though this is primarily helpful

for improving mapping, not alignment. The Broad Institute has incorporated into their stan-

dardized analysis pipeline (Genome Analysis ToolKit, or “GATK”) an IndelRealigner, rec-

ognizing that INDELs are frequently mis-called as SNPs at read edges [27]. STR-realigner

is most similar to our work. It flags STR regions and aligns them separately, allowing re-

peated traversal of STRs during alignment [28]. They find that this approach improves the

consistency of read alignment in and near repeated regions, improving downstream variant

calling. STR-realigner was designed for short reads, however, and its runtime Ω(n2) which

is perfectly fine for short reads of length 101bp is not unacceptable for long reads which

regularly reach lengths upwards of 100kbp.

Figure 5 Gap penalties for various copy number deletions, compared to a static affine gap penalty. The

penalty is dependent on the local repeat pattern’s periodicity (n = 2) and length (l = 3, 6, 9).

Our work introduces a variable gap penalty for n-polymer copy number INDELs, as

shown in Figure 5. INDELs are more likely to occur in n-polymers, and so we provide

a lower context-specific gap penalty, allowing only copy number INDELs. The exact se-

quence is not considered in this work; all 2-polymers of length 3 are scored the same (e.g.

ATATAT and TGTGTG).

Dunn et al. Page 7 of 25

This work makes the following contributions:

• We identify the main source of nanopore germline small variant calling errors to be

INDEL false negatives in tandem repeat and homopolymer (“n-polymer”) regions

during pileup-based variant calling

• We show that context-agnostic affine/convex gap penalties do not accurately reflect

the likelihood of nanopore sequencing errors in n-polymer regions

• We extend Needleman-Wunsch affine gap alignment to include context-dependent

gap penalties for more accurately aligning n-polymers

• We introduce “follow-banding” for efficient read realignment

• We develop a VCF standardization method that ensures variants are reported in the

same format as our nPoRe realigner

• We show that haplotype phasing and nPoRe realignment significantly improve

pileup-based variant calling accuracy

Results

Overview

This work focuses on improving the accuracy of germline small variant calling (heritable

mutations < 50bp in size). We do so by realigning mapped reads (inputting and outputting

in standard BAM format) to improve fine-grained alignment and read concordance by ad-

justing each read’s CIGAR string. Because we are concerned only with small variants,

performing realignment within a ±50bp window of the original mapping/alignment is suf-

ficient. This work is independent of downstream variant caller, and nPoRe can be used

in combination with either Clair3 or PEPPER. To evaluate nPoRe, we retrain Clair3 from

scratch with MiniMap2- and nPoRe-realigned reads. We find that when retraining Clair3,

it is beneficial to “standardize” the ground truth VCF to report variants in a manner similar

to nPoRe-realigned reads (details in Methods). Realigning reads with nPoRe is relatively

efficient and results in a significant increase in read concordance, which translates well to

an improvement in final variant calling accuracy.

Accuracy

Figure 6 reports the performance of all three evaluated Clair3 pipelines, with precision

and recall for SNPs and INDELs given separately for each sub-region. Results are re-

ported for both the original and standardized ground-truth VCFs (see Methods). Figure 6

shows that n-polymer regions are responsible for the majority of INDEL errors, since with

Dunn et al. Page 8 of 25

these regions excluded, INDEL precision and recall both exceed 95%. Performance in

tandem repeat regions alone is relatively good, and homopolymers account for the ma-

jority of remaining errors. For a fixed INDEL precision of 2/3, sorting reads by haplo-

type (clair3→clair3-hap) improves INDEL recall from 63.76% to 70.66%. Realigning

reads with nPoRe (clair3-hap→clair3-npore-hap) further improves INDEL recall to

73.04%.

We chose to perform evaluations using both VCFs because although they contain the ex-

act same information, the “standardized” VCF was more likely to report several INDELs

instead of several SNPs (due to the lower n-polymer shortening/lengthening penalty), and

occasionally broke an INDEL up into several smaller INDELs. As a result, the standardized

VCF had 18.05% more INDELs (31,104) and 1.45% fewer SNPs (155,163) than the origi-

nal VCF (25,500 INDELs and 157,454 SNPs). hap.py’s vcfeval engine assigned partial

credit for SNPs less frequently to nPoRe-aligned reads. The standardized VCF resulted in

apparent higher INDEL recall for all variant callers, due to the increase in total INDELs.

Figure 6 Accuracy results for each Clair3 pipeline stratified by region. Results are reported for both the

original (lighter colors, denoted +) and standardized (darker colors, denoted •) ground-truth VCFs, and

titled with the percentage of SNP/INDELs within each region according to both truth VCFs.

Read Concordance

If sequenced reads were to not contain errors, they would all perfectly agree with one

another and variant calling would be easy. We would like to maximize the extent to which

reads agree with one another, which we term “concordance” and measure per-haplotype

and per-position in terms of Gini purity. Gini purity is defined as GP =
∑N

i=1 P(i)
2, where

Dunn et al. Page 9 of 25

Figure 7 Read concordance: Gini purity histograms for a) pileup columns and b) insertions

N is the number of classes and P(i) is the probability of class i. Figure 7a (lower graph)

shows the resulting Gini purity histogram with the classes A, C, G, T, - (deletion) on a

logarithmic y-scale. If all reads agree, GP = 1. If 50% call T and 50% call C, GP = 0.5. In

the worst case, where there is an even split between the five classes, GP = 0.2. Reference

positions with low Gini purity scores are therefore difficult to call, and are a likely source

of both false positive and false negative variants. The lower graph in Figure 7 compares the

Gini purity score distributions in MiniMap2 and nPoRealigned BAMs. It shows a marked

≈ 50% decrease in positions with Gini purity less than 0.5 for the nPoRe-realigned BAM,

demonstrating that nPoRe greatly improves alignment concordance across reads in difficult

regions.

Read concordance in the phased BAM pileup, evaluated by Gini purity computed per

reference position, is shown in Figure 7a. Insertion concordancy was evaluated sepa-

rately, in Figure 7b, where the classes are all insertions between base k and k + 1 (e.g.

ϵ, A, AA, AAA, AT, ATT...). We plot insertions separately because the variable number of

classes greatly affects the Gini purity score distribution. There appears to be an approxi-

mately 10% increase for all imperfect Gini purity scores, which we attribute to nPoRe’s

increased likelihood of calling INDELs (and as a result, more average classes and greater

divergence).

Timing

We performed our evaluations on a system with 2× Intel Xeon E5 2697v3 2600MHz CPUs

and 64GB total RAM. Timing results are shown in Table 1. From this evaluation, it is clear

that any pipeline stages requiring computation on the full BAM file (marked with *) are

considerably more expensive than working with just putative variants, a small fraction of

the entire genome. Although our nPoRe realigner accounted for 79.6% of total CPU time,

Dunn et al. Page 10 of 25

Step Real Time CPU Time

*align reads 1,218:01 7,808:24

generate tensors 44:29 301:53

train clair3 38:18 54:22

call variants 86:26 2,392:17

phase variants 347:58 344:05

*phase reads 240:32 228:03

*index BAM 1,138:09 1,750:13

phase truth VCF 364:23 360:03

standardize truth VCF 546:31 3,756:46

*realign reads 2,168:15 111,792:55

*generate haplotype tensors 1,363:23 3,162:48

train model 41:40 66:29

call variants 200:08 8,343:01

Table 1 Timing results for stages in the clair3-npore-hap pipeline (Table 3).

Figure 8 a) 1- and b) 3-polymer score matrices

it only accounted for 27.8% of the real runtime, or just under twice as long as it took to

index the BAM. nPoRe’s CPU time was 51.6× its real time on our system with 56 total

cores, demonstrating that we took full advantage of the available parallelism.

Score Matrices

Figure 8 shows the calculated score matrices for 1- and 3-polymers, corresponding to the

confusion matrices in Figure 2. In general, n-polymer INDELs are penalized less than the

general-case affine gap INDEL penalty. Additionally, insertions are more common than

deletions, and INDELs are more common in n-polymers of shorter repeat unit length (n).

Discussion

The current nPoRe algorithm implementation was designed to demonstrate that there is a

significant difference in INDEL rates between repetitive and non-repetitive sequences, due

Dunn et al. Page 11 of 25

to the common occurrence of n-polymer copy number INDELs and sequencing errors. In

order to do so, we decided upon a strict definition of n-polymers that requires at least three

repetitions of the exact same repeat unit. We found that this strict definition includes around

65% of all INDELs in our dataset. Despite this, there are many repetitive regions in which

sequencing errors are common but do not meet our strict definition of an n-polymer. For

example, the sequence AAATAAAATAAATAAAT is not an n-polymer because the second rep-

etition of AAAT has an additional A. A more lenient definition of n-polymers would result

in a broader application of reduced INDEL gap penalties for repetitive regions and may

improve alignment results further. Additional leniency, however, would come at the cost

of increased computation. Alternatively, we could consider the actual n-polymer sequence

(instead of just unit size n and length l) during alignment, which would also increase com-

putation and memory requirements.

We find alignment speed to be the greatest practical limitation of our nPoRe aligner,

despite writing our alignment kernel in Cython and taking full advantage of the available

parallelism. Genomics datasets are inherently large, and a hyper-optimized implementation

with SIMD intrinsics and reduced data width may be necessary for large-scale applications.

We have already explored reducing memory usage by shifting to a difference-based n-

polymer cost matrix and only storing 2∗nmax+1 matrix rows in memory, resulting in about

10-20% performance gains. Replacing the n-polymer cost matrix with a best-fit surface or

function would likely improve efficiency further by reducing irregular memory accesses.

We consider the main contribution of this work to be identifying fine-grained alignment as

a significant source of small variant calling INDEL errors and developing an algorithmic

solution. Speed can be improved through further engineering efforts.

The current design of nPoRe operates under the principles of reference-guided alignment

and considers each read independently, using aggregate statistics on INDEL likelihood to

better estimate the most likely alignment of each read. A promising avenue for future work,

however, would be to consider the alignments of all reads overlapping the same reference

location simultaneously, and select the most likely alignment in the context of other over-

lapping/neighboring alignments. Consensus graph-based alignments can take additional

local information (provided by other overlapping reads) into account in order to provide

more consistent alignments between reads.

The astute reader may notice that our n-polymer copy number INDEL penalties were cal-

culated based on the measured negative log likelihood of occurrence in the original BAM,

Dunn et al. Page 12 of 25

which as we’ve pointed out, has issues with fine-grained alignment. Does that mean that

nPoRe’s gap penalties are entirely wrong? Not really. The original BAM’s fine-grained

alignment is inconsistent across reads, since alignments are unduly affected by nearby er-

rors. Even if this were to affect our estimate of n-polymer copy number INDEL likelihoods

by 2×, the effect on INDEL penalty is only log 2 ≈ 0.69. Figure 8 shows that for a 3-

polymer, the penalty for a 3-base deletion ranges from 3.7 to 3.0 as length increases from 3

to 10. Since MiniMap2 is biased against n-polymer INDELs, we are only underestimating

likelihood and the n-polymer penalties should all be slightly lower (by < 0.5). In contrast,

without these n-polymer INDEL scores, a 3-base deletion is penalized Gopen+2∗Gextend = 7.

Our algorithm successfully compensates for the orders of magnitude increase in likelihood

of INDELs in n-polymer regions. A second iteration of INDEL likelihood estimation using

the nPoRe-realigned BAM would further improve score estimation.

Conclusions

We identify the main source of nanopore germline small variant calling errors to be copy

number INDEL false negatives in n-polymer regions, and show that context-agnostic affine

gap penalties do not accurately reflect the likelihood of nanopore sequencing errors. To

improve nanopore pileup-based variant calling accuracy, we explore correcting fine-grained

read alignment. This work extends Needleman-Wunsch affine gap alignment to include

repeat-aware gap penalties for n-polymers. In doing so, we also develop “follow-banding”

for efficient long read realignment and a method for standardizing ground-truth VCFs. We

demonstrate that read realignment improves read concordance and variant calling accuracy,

and release nPoRe[1] as an open source tool.

Despite being located in low-complexity regions, calling the length of tandem repeats is

clinically relevant. There is an entire class of neuropathological disorders associated with

copy number variation known as “Tandem Repeat Disorders”, or TRDs. Huntington’s Dis-

ease is one such disorder caused by 40 or more repeats of the CAG 3-polymer at the end

of the gene HTT, instead of a normal 10-30 copies. Other TRDs include Fragile X Syn-

drome, Kennedy’s Disease, mytonic dystrophy, and several spinocerebellar ataxias [29].

Since nPoRe improves significantly improves read alignment and variant calling in tandem

repeat regions, it will lead directly to more accurate diagnoses of such disorders.

[1]https://github.com/TimD1/nPoRe

Dunn et al. Page 13 of 25

Methods

Overview

Because we have designed a read realignment algorithm, we trust the initial mapping of

each read. Each read and its corresponding section of the reference genome are realigned,

and a new traceback (alignment path) is computed. In other words, our solution simply

adjusts the CIGAR string of each read within the input BAM file to better model the most

likely mutations and sequencing errors in an effort to achieve greater concordancy between

reads.

Our realignment algorithm is an extension of the Needleman-Wunsch algorithm for

global alignment [30]. In addition to including known improvements such as an affine gap

penalty and custom substitution penalty matrix [31], our algorithm allows the shortening

and lengthening of homopolymers and tandem repeats (i.e. ACACAC→ACACACAC).

n-Polymer Repeats

The literature often categorizes sequences consisting of one repeated base as “homopoly-

mers”, and repeated sequences of at least two bases as “tandem repeats” or “copoly-

mers” [8, 32]. Short tandem repeats (STRs) are often defined as repeated units 2-6 bases in

length, and are also known as “microsatellites” or “simple sequence repeats” (SSRs) [33].

Rather than treating these classifications separately for nPoRe, we define an n-polymer

to consist of at least 3 exact repeats of the same repeated sequence, where the repeat

unit is of length 1 to 6 bases (1 ≤ n ≤ 6, l ≥ 3). For example, homopolymers such as

AAAAA (n = 1) and tandem repeats such as ACACACAC (n = 2) and TTGTTGTTG

(n = 3) are n-polymers. Shorter or irregular repeated sequences such as AATTAATT and

ACAACAAACAC are not.

An upper threshold of nmax = 6 was selected because there is a marked decrease in the

frequency of n-polymers for n > 6. Tandem repeats are usually defined with the same

upper bound on repeat unit length n for the same reason. Figure 4 shows that 6-polymers

are already uncommon. Furthermore, nanopore R9.4.1 sequencers fail to accurately call

the length of n-polymers because the pore’s effective sensing width is 5-6 bases; i.e. the

measured signal depends upon 5-6 adjacent bases simultaneously [34]. An n-polymer for

n ≤ 6 is usually observed as a nearly-constant signal due to exact repetition, from which it

is difficult to determine repeat length. For n-polymers where n > 6, this is less of a problem,

and fewer errors are observed. For a similar reason, a minimum n-polymer length of l = 3

Dunn et al. Page 14 of 25

was decided upon to classify a repeated sequence as an n-polymer. If l = 2, there is never

a series of n bases bordered on both sides by another copy of the same n bases. The two

copies of n bases are each adjacent to a non-repeating region, and as a result the measured

signal is non-constant and few basecalling errors occur.

Penalty Functions

For each read, differences from the reference genome can be attributed to either sequencing

errors or actual mutations. Regardless of origin (error or mutation), our goal is to align these

reads to the reference in a manner that accurately captures the change that occurred. Ex-

isting aligners fail to do this by defining substitution and gap penalties based on estimated

rather than measured rates of occurrence, and the algorithms do not account for common

sequencing error modes such as tandem repeat length errors in nanopore sequencers. In

contrast, we calculate penalties based on frequency measurements from the input BAM

file. We define the penalty score for each difference (whether error or mutation) to be the

negative log likelihood of that event occurring. As a result, finding the minimum-penalty

alignment path is equivalent to finding the most likely set of errors and mutations that have

occurred (assuming independence).

Substitution Penalty Matrix

Figure 9 shows the calculation of substitution penalty matrix P from confusion matrix CP,

using Equation 1. ϵ = 0.01 was included for numerical stability in the case that certain

events were never observed. If we consider bases x = “ACGT”, then P[i, j] is the nega-

tive log probability that base x[i] was observed as base x[j], either through a mutation or

sequencing error:

P[i, j] ≈ − logP(x[i]→ x[j]) ≈ − log
CP[i, j] + ϵ

sum(CP[i, :]) + ϵ
(1)

Affine Gap Penalties

Confusion matrices for insertions (CI) and deletions (CD) were first generated by measur-

ing the occurrence of small INDELs in the input BAM. Both matrices are 1D, since the

expected INDEL length is always zero. Then, penalties were calculated by determining

the negative log probability of each INDEL length i occurring: − log CI [i]+ϵ
sum(CI)+ϵ

. From these

penalties, a best-fit gap opening penalty Gopen of 5 and gap extension penalty Gextend of 1

was selected for both insertions and deletions [31].

Dunn et al. Page 15 of 25

Figure 9 a) substitution confusion matrix CP, count in millions, and b) resulting penalty matrix P.

Tandem Repeat Penalty Matrix

First, confusion matrix CN of shape 6 × 100 × 100 was generated by comparing expected

and observed n-polymer lengths l (up to 100). For each n, or repeat unit size 1−6, a penalty

matrix was calculated using the following equation, where i is the expected repeat length

and j is the measured repeat length.

N[n, i, j] ≈ − logP(n, i, j) ≈ − log
CN[n, i, j] + ϵ

sum(CN[n, i, :]) + ϵ

To improve penalty regularity, particularly for longer n-polymers where few examples

were observed, the following two properties were enforced for each possible combination

of k > 0, n, i within the bounds of N:

• shorter INDELs are more likely:

N[n, i, i ± k] > N[n, i, i ± (k + 1)]

• longer n-polymers are more likely to contain an INDEL of a given size:

N[n, i + 1, (i + 1) ± k] > N[n, i, i ± k]

Reference Annotation

Reference annotations are used to track eligible n-polymers during alignment. For each

possible n-polymer repeat unit length from n = 1 to nmax, each reference position is anno-

tated with l, the length or number of consecutive repeat units, and idx, the 0-based index

of the current repeat unit (0 ≤ idx < l). Table 2 shows example annotations for a short

reference sequence for n = 1 and n = 2. Recall that in order for a sub-sequence to be con-

sidered an n-polymer, the pattern must repeat exactly at least three times. Annotations may

overlap, and non-zero annotations are only placed at the start of every n-polymer repeat

unit.

Dunn et al. Page 16 of 25

Reference: A T A T A T A T T T T T A A A G C G C G C

n=1
l: 0 0 0 0 0 0 0 5 5 5 5 5 3 3 3 0 0 0 0 0 0

idx: 0 0 0 0 0 0 0 0 1 2 3 4 0 1 2 0 0 0 0 0 0

n=2
l: 4 3 4 3 4 3 4 0 0 0 0 0 0 0 0 3 0 3 0 3 0

idx: 0 0 1 1 2 2 3 0 0 0 0 0 0 0 0 0 0 1 0 2 0

Table 2 Example n-polymer reference annotations

Alignment

Before aligning read r to reference R, the reference is annotated with n-polymer infor-

mation as discussed previously. Then, the five matrices D, I,M, S , and L are computed

in lockstep one cell at a time, in that order. These matrices of size |r| × |R| represent the

states Deleting, Inserting, Matching, Shortening n-polymers, and Lengthening n-polymers,

respectively. For each cell, each matrix stores a tuple (val, pred, run) containing the accu-

mulated penalty value, in addition to the predecessor matrix and consecutive movements

(run) within that matrix for backtracking purposes.

Figure 10 demonstrates the cell dependency patterns and penalties in greater detail. For

example, when computing cell i, j in S , the reference annotations l and idx, are first re-

trieved for each n for R[j]. All dependencies (marked with • for S) in Figure 10 are con-

sidered, and the minimum value of these dependencies’ cell values plus the associated

penalties is calculated and stored in the result cell (marked with � for S). In other words,

when looking at S [i, j], for each n, we do:

S [i, j + n] = min(M[i, j] + N[n, l, l − 1],

S [i, j − run] + N[n, l, l − 1 − run/n])

These two movements correspond to starting to shorten a tandem repeat (state M→S), and

continuing to shorten a tandem repeat (state S→S). All movements into matrices S and L

such as these are only allowed conditionally based on reference annotations (described in

the following section). Note that if matrices S� and L▲ are omitted (as well as all • and ▲

dependencies), this algorithm is equivalent to Needleman-Wunsch alignment with an affine

gap penalty [30].

n-Polymer INDEL Conditions

Unlike matrices D, I, and M, the results for matrices S and L are stored several cells ahead

of the current cell, and cell dependencies are only allowed conditionally based on the refer-

Dunn et al. Page 17 of 25

ence annotations. This ensures that matrices S and L only allow INDELs which change the

copy number of tandem repeats and homopolymers. Here are the three conditions c1, c2, c3

used by our algorithm, and referenced in Figure 10:

c1 = l > 0 start of repeat unit

c2 = l > 0 and idx == 0 start of n-polymer

c3 = R[j + 1 : j + 1 + n] ==

r[i + 1 : i + 1 + n] next n bases of r match R

Figure 10 Realignment algorithm dependencies and penalties for computing cell i, j in the five matrices

D■, I♦,M⋆, S�, L▲, which represent the states Deleting, Inserting, Matching, Shortening, and

Lengthening, respectively. Computation for cell i, j occurs in that order, and large symbols (e.g. ■)

denote where the result is stored. Superscript symbols (e.g. ■) represent cell dependencies, and a

penalty score accompanies it. Each result is the minimum value of all dependency cells plus their

accompanying penalty scores. n-polymer shortening and lengthening is only allowed if certain

conditions are met (c1, c2, c3), described in the text.

Backtracking

Traceback occurs entirely within matrix M, and relies on predecessor and run length in-

formation computed during the forward pass. The selected optimal alignment path is com-

puted by Algorithm 1 and reported in the output BAM file in the form of a CIGAR string.

CIGAR strings are composed of the symbols M, I, and D. Reference Matches, Insertions,

and Deletions, correspond to diagonal, vertical, and horizontal movements in the alignment

matrix, respectively. An example alignment is denoted by • in Figure 11a. After computa-

tion, the computed CIGAR string is collapsed (MMMDMIMM→3M1D1M1I2M).

Follow-Banding

As mentioned previously, the primary goal of our read realignment algorithm is to more

accurately model the mutations and sequencing errors in fine-grained alignment. Therefore,

we can skip read mapping and trust the read start position reported by the previous aligner.

Dunn et al. Page 18 of 25

Algorithm 1 Backtracking algorithm
i, j← |r| − 1, |R| − 1

cigar ← “”

while i > 0 or j > 0 do

(val, pred, run)← M[i, j]

if pred == M then

if r[i] == R[j] then

cigar += “ = ”

i, j← i − 1, j − 1

else

cigar += “X”

i, j← i − 1, j − 1

end if

else if pred == I or pred == L then

cigar += “I” ∗ run

i← i − run

else if pred == D or pred == S then

cigar += “D” ∗ run

j← j − run

end if

end while

return cigar[:: −1]

In addition to the mapping POSition field, the SAM/BAM file format [35] includes TLEN,

or the template (reference) length which corresponds to the aligned read. Thus, we can

align read r to a small subsection of the reference R[POS : POS + TLEN]. Barring any large

INDELs, TLEN ≈ |r|, and we transform our alignment problem from O(|R||r|) to O(|r|2).

Moreover, we can use the SAM/BAM file’s existing CIGAR string to simplify our align-

ment problem even further. Our optimal alignment will likely follow a path close to that of

the original alignment. Figure 11a demonstrates how we can compute the alignment matrix

(new optimal path denoted by •) in a narrow band b = 1 that follows the original alignment

(red cells). Dark gray and black cells are not computed. Essentially, we use the CIGAR

string to precompute the movement directions for adaptive banded alignment as proposed

by Suzuki and Kasahara [36], instead of using a heuristic comparing penalty scores on the

band’s edge.

Firstly, all M CIGAR operations are converted to ID, an insertion followed by a deletion.

This change is shown in Figure 11, supplementing the original red alignment path with

light gray cells. Next, computation proceeds one anti-diagonal row of width 2b + 1 at a

time, centered on the alignment path. The computation of anti-diagonal rows shifts either

right or downward at each step, governed by the previous CIGAR operation, D or I. These

anti-diagonal rows can be stored efficiently in matrix format, as demonstrated in Figure 11b.

Dunn et al. Page 19 of 25

Figure 11 Follow banding matrix transformation A→ B

Transforming the banded |r| × |r| matrix A to a (2b + 1) × 2|r| matrix B saves significant

space because nanopore sequencing read lengths |r| can be up to several million bases [4],

while realignment works well with a band width of b = 30.

Offset arrays INSs and DELs can be precomputed using the CIGAR (Figure 11). Given

a cell in matrix B with indices i, j, its position in matrix A can be computed using the

following formula:

row = INSs[i] + b − j col = DELs[i] − b + j

Time and Space Complexity

Reference annotations

The worst-case time complexity for computing the reference annotations is O(|R|n2
maxlmax),

where |R| is the length of the reference R, and nmax is the maximum n-polymer considered,

and lmax is the maximum n-polymer length. Since our n-polymer score matrix N is of size

(6, 100, 100), nmax = 6, and lmax = 100. Thus, the time complexity is effectively O(|R|). Fur-

thermore, these annotations must only be computed once, and cost can be amortized over

all the reads that are aligned to the reference. We found the time required for reference an-

notations to be insignificant compared to alignment. These annotations require O(|R|nmax)

space.

Dunn et al. Page 20 of 25

Read alignment

Once the reference annotations and score matrices have been computed, the nPoRe algo-

rithm requires O(|R||r|) time for each read r. The only additional overhead nPoRe incurs

over Needleman-Wunsch with affine gaps is computing five Dynamic Programming (DP)

matrices instead of three, as well as computing the new cell dependencies. All new penal-

ties are conditional O(1) lookups. As discussed earlier, follow-banding further reduces both

the time and space complexity of alignment from O(|R||r|) to O(b|r|), where b is the band

width. In total, the cost of aligning all reads is O(
∑m

i=1 b × |ri|), where m is the number of

reads, or equivalently O(db|R|), where d is the average depth of coverage.

All our code is open source and readily available at: https://github.com/TimD1/

nPoRe.

Datasets

Reference

We used the GrCh38 reference from the Genome-In-A-Bottle (GIAB) consortium [32].

Reads

We obtained our FASTQ files from ONT Open Datasets’ May 2021 re-basecalling of

HG002 PromethION R9.4.1 data using Guppy 5.0.6. Specifically, we used flow cell

PAG07162, prepared using the Short Read Eliminator (SRE) protocol [37]. Depth of cov-

erage was approximately 60×. For training, we used chr1-chr19, and for testing we used

chr20-chr22.

Stratification Regions

Stratification BED regions were calculated for n = 1...nmax using the definition of n-

polymers provided previously. Regions were extended by a single base on each side

(slop=1) to include variants occurring at the edges of n-polymer regions. These BEDS

were then merged and complemented as necessary to create stratification BEDS for all

n-polymer regions and non n-polymer regions.

Pipeline

The full training and evaluation pipelines for all three Clair3 configurations tested are

shown in Table 3. We used minimap2 version 2.17-r954-dirty [38], clair3 version

v0.1-r9 [7], whatshap version 1.0 [39], and hap.py version v0.3.14 [32]. All three

https://github.com/TimD1/nPoRe
https://github.com/TimD1/nPoRe

Dunn et al. Page 21 of 25

Step c
l
a
i
r
3

c
l
a
i
r
3
-
h
a
p

c
l
a
i
r
3
-
n
p
o
r
e
-
h
a
p

Program

align reads ✓ ✓ ✓ minimap2

generate tensors ✓ ✓ ✓ clair3/CTP.py

train clair3 ✓ ✓ ✓ clair3/Train.py

call variants ✓ ✓ ✓ clair3/run clair3.sh

phase variants ✓ ✓ whatshap phase

phase reads ✓ ✓ whatshap haplotag

phase truth VCF ✓ ✓ whatshap phase

standardize truth VCF ✓ nPoRe/standardize vcf.py

realign reads ✓ nPoRe/realign.py

generate haplotype tensors ✓ ✓ clair3-hap/CTPHaps.py

train model ✓ ✓ clair3-hap/Train.py

call variants ✓ ✓ clair3-hap/run clair3.sh

evaluate variants ✓ ✓ ✓ hap.py

Table 3 Clair3 training and evaluation pipelines.

variant callers were trained from scratch using our 60× HG002 dataset on MiniMap2-

aligned reads for chr1-chr19, and tested on chr20-chr22. We first extended the retrained

Clair3 baseline (clair3), phasing the input reads by haplotype and training a phased

pileup candidate caller (clair3-hap). This was done because it significantly improves

read concordancy, and leaving reads unphased when calling difficult single-haplotype vari-

ants might overshadow concordancy improvements gained by nPoRe’s alignment algo-

rithm. This second baseline enables us the clearly delineate the gains from haplotype phas-

ing and our nPoRe alignment algorithm. The final configuration was clair3-npore-hap,

in which we performed ordinary variant calling with clair3, phased reads by haplotype,

and then realigned them with nPoRe prior to variant calling.

Haplotype Phasing

In order to add haplotype phasing information to Clair3, a single iteration of the ordinary

pileup-based pipeline was first run. Proposed variants were then phased using whatshap

phase, and reads were tagged by haplotype using whatshap haplotag. We then sorted

reads by haplotype into three separate BAM files. When generating the input pileup ten-

sor for training clair3-hap and clair3-npore-hap, for each position a pileup tensor

was generated for both unphased reads, reads from the first haplotype, and reads from the

Dunn et al. Page 22 of 25

second haplotype. These three pileup tensors were then concatenated to create a new input

tensor for Clair3.

Truth VCF Standardization

Figure 12 VCF Standardization: The ground-truth VCF is modified to report variants in a manner

similar to nPoRe-realigned reads. The resulting sequence is unchanged.

Figure 12 shows a simplified example of a typical MiniMap2 input BAM in com-

parison to the nPoRe-realigned output BAM. nPoRe is comparatively more likely to

call n-polymer INDELs than SNPs, due to the reduced INDEL penalty. We found that

clair3-npore-hap variant calling performance suffers if we train Clair3 with the original

ground-truth VCF, since the realigned reads tend to report variants using an INDEL-heavy

representation. To mitigate this, we altered the ground-truth VCF so that it reports variants

using the same representation our aligner tends towards. An example of this “standardized”

VCF is shown in Figure 12.

To achieve this, we copied our reference FASTA to create two haplotype FASTAs,

and applied the phased ground-truth variants to each haplotype FASTA, storing the new

CIGAR. Using a mapping position of 0, the generated haplotype references, and asso-

ciated CIGARs, we considered these ground-truth haplotype references to be reads and

aligned them to the original reference using nPoRe. Any substitutions, insertions, or dele-

tions in the resulting alignment were then parsed into a new standardized ground-truth

VCF file. This process ensures that the new “standardized” truth VCF contains the same

exact ground-truth sequence as the original VCF when applied to the reference FASTA, but

reports variants in a manner consistent with nPoRe.

Dunn et al. Page 23 of 25

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

The FASTQ dataset supporting the conclusions of this article is available in the ONT Open Datasets repository.

For chromosomes N = 1 to 22, we downloaded: s3://ont-open-data/gm24385 2020.11/analysis/r9.4.1/20201026 1644 2-E5-

H5 PAG07162 d7f262d5/guppy v4.0.11 r9.4.1 hac prom/align unfiltered/chrN/guppy v5.0.6 r9.4.1 sup prom/basecalls.fastq.gz.

Specifically, we used flow cell PAG07162 from the May 2021 re-basecalling of HG002 PromethION R9.4.1 data using

Guppy 5.0.6; more details regarding this data can be found here.

We used the GrCh38 reference FASTA from the Genome-In-A-Bottle (GIAB) consortium [32], also made available through

ONT Open Datasets:

s3://ont-open-data/gm24385 2020.09/config/ref/GCA 000001405.15 GRCh38 no alt analysis set.fasta.

The ground truth VCF and BED files were provided by GIAB at the following link: https://ftp-

trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG002 NA24385 son/NISTv4.1/GRCh38/.

The source code for nPoRe is available at https://github.com/timd1/npore, and archived through Zenodo:

https://zenodo.org/record/6260902. nPoRe is written in Python/Cython and is available cross-platform through a public

Docker container (https://hub.docker.com/r/timd1/npore) under the GNU GPLv3 license.

Competing interests

The authors declare that they have no competing interests.

Funding

This project was supported by the Kahn Foundation and the National Science Foundation. The NSF supported this work

under NSF Grant 2030454 and NSF Graduate Research Fellowship 1841052. Any opinion, findings, and conclusions or

recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the

National Science Foundation.

Authors’ contributions

TD was responsible for designing and implementing nPoRe, and all subsequent data analysis. DB, RD, and SN provided

valuable guidance and feedback along the way, and assisted with writing the manuscript. All authors read and approved the

final manuscript.

Acknowledgements

Although the origins of the code are now unrecognizable, it began as a fork of swalign, developed by Marcus Breese.

Author details

University of Michigan, Ann Arbor, USA.

References

1. Lang D, Zhang S, Ren P, Liang F, Sun Z, Meng G, et al. Comparison of the two up-to-date sequencing technologies for

genome assembly: HiFi reads of Pacific Biosciences Sequel II system and ultralong reads of Oxford Nanopore.

GigaScience. 2020 12;9(12). Giaa123. Available from: https://doi.org/10.1093/gigascience/giaa123.

2. Brown C. Technology Update; 2021. Nanopore Community Meeting. Available from:

https://nanoporetech.com/resource-centre/clive-brown-ncm-update-2021.

3. Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, et al. The complete sequence of a human

genome. bioRxiv. 2021;Available from:

https://www.biorxiv.org/content/early/2021/05/27/2021.05.26.445798.

4. Kilburn D, Burke J, Fedak R, Olsen H, Jain M, Miga K, et al.. High Data Throughput and Low Cost Ultra Long

Nanopore Sequencing;. Available from: https://15a13b02-7dac-4315-baa5-b3ced1ea969d.filesusr.com/

ugd/5518db_164bac27f4654b1f94d3472f09372498.pdf.

https://registry.opendata.aws/ont-open-data/
s3://ont-open-data/gm24385_2020.11/analysis/r9.4.1/20201026_1644_2-E5-H5_PAG07162_d7f262d5/guppy_v4.0.11_r9.4.1_hac_prom/align_unfiltered/chrN/guppy_v5.0.6_r9.4.1_sup_prom/basecalls.fastq.gz
s3://ont-open-data/gm24385_2020.11/analysis/r9.4.1/20201026_1644_2-E5-H5_PAG07162_d7f262d5/guppy_v4.0.11_r9.4.1_hac_prom/align_unfiltered/chrN/guppy_v5.0.6_r9.4.1_sup_prom/basecalls.fastq.gz
https://labs.epi2me.io/gm24385_2021.05/
s3://ont-open-data/gm24385_2020.09/config/ref/GCA_000001405.15_GRCh38_no_alt_analysis_set.fasta
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG002_NA24385_son/NISTv4.1/GRCh38/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG002_NA24385_son/NISTv4.1/GRCh38/
https://github.com/timd1/npore
https://zenodo.org/record/6260902
https://hub.docker.com/r/timd1/npore
https://www.gnu.org/licenses/gpl-3.0.en.html
https://github.com/mbreese/swalign
https://doi.org/10.1093/gigascience/giaa123
https://nanoporetech.com/resource-centre/clive-brown-ncm-update-2021
https://www.biorxiv.org/content/early/2021/05/27/2021.05.26.445798
https://15a13b02-7dac-4315-baa5-b3ced1ea969d.filesusr.com/ugd/5518db_164bac27f4654b1f94d3472f09372498.pdf
https://15a13b02-7dac-4315-baa5-b3ced1ea969d.filesusr.com/ugd/5518db_164bac27f4654b1f94d3472f09372498.pdf

Dunn et al. Page 24 of 25

5. Stoiber M, Quick J, Egan R, Eun Lee J, Celniker S, Neely RK, et al. De novo Identification of DNA Modifications

Enabled by Genome-Guided Nanopore Signal Processing. bioRxiv. 2017;Available from:

https://www.biorxiv.org/content/early/2017/04/10/094672.

6. Tyson JR, James P, Stoddart D, Sparks N, Wickenhagen A, Hall G, et al. Improvements to the ARTIC multiplex PCR

method for SARS-CoV-2 genome sequencing using nanopore. bioRxiv;.

7. Zheng Z, Li S, Su J, Leung AWS, Lam TW, Luo R. Symphonizing pileup and full-alignment for deep learning-based

long-read variant calling. bioRxiv. 2021;Available from:

https://www.biorxiv.org/content/early/2021/12/30/2021.12.29.474431.

8. Shafin K, Pesout T, Chang PC, Nattestad M, Kolesnikov A, Goel S, et al. Haplotype-aware variant calling with

PEPPER-Margin-DeepVariant enables high accuracy in nanopore long-reads. Nature Methods. 2021;18:1322–1332.

9. Luo R, Wong CL, Wong YS, Tang CI, Liu CM, Leung CM, et al. Exploring the limit of using a deep neural network on

pileup data for germline variant calling. Nature Machine Intelligence. 2020;2(4):220–227.

10. Luo R, Sedlazeck FJ, Lam TW, Schatz MC. Clairvoyante: a multi-task convolutional deep neural network for variant

calling in single molecule sequencing. bioRxiv. 2018;p. 310458.

11. Poplin R, Chang PC, Alexander D, Schwartz S, Colthurst T, Ku A, et al. A universal SNP and small-indel variant caller

using deep neural networks. Nature biotechnology. 2018;36(10):983–987.

12. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer.

Nature biotechnology. 2011;29(1):24–26.

13. Gotoh O. An improved algorithm for matching biological sequences. Journal of Molecular Biology.

1982;162(3):705–708. Available from:

https://www.sciencedirect.com/science/article/pii/0022283682903989.

14. Shafin K. ONT R9.4.1 Guppy 5.0.7 sup HG003 whole genome performance evaluation against Clair3; 2021. Available

from: https://github.com/kishwarshafin/pepper/blob/r0.7/docs/performance_evaluation/Oxford_

nanopore_r9_whole_genome.md.

15. Thompson JD. Introducing variable gap penalties to sequence alignment in linear space. Bioinformatics.

1995;11(2):181–186.

16. Smith RF, Smmith TF. Pattern-induced multi-sequence alignment (PIMA) algorithm employing secondary

structure-dependent gap penalties for use in comparative protein modelling. Protein Engineering, Design and

Selection. 1992;5(1):35–41.

17. Shi J, Blundell TL, Mizuguchi K. FUGUE: sequence-structure homology recognition using environment-specific

substitution tables and structure-dependent gap penalties. Journal of molecular biology. 2001;310(1):243–257.

18. Fischel-Ghodsian F, Mathiowitz G, Smith TF. Alignment of protein sequences using secondary structure: a modified

dynamic programming method. Protein Engineering, Design and Selection. 1990;3(7):577–581.

19. Qiu J, Elber R. SSALN: An alignment algorithm using structure-dependent substitution matrices and gap penalties

learned from structurally aligned protein pairs. Proteins: Structure, Function, and Bioinformatics. 2006;62(4):881–891.

20. Madhusudhan M, Marti-Renom MA, Sanchez R, Sali A. Variable gap penalty for protein sequence–structure

alignment. Protein Engineering Design and Selection. 2006;19(3):129–133.

21. Goonesekere NC, Lee B. Frequency of gaps observed in a structurally aligned protein pair database suggests a

simple gap penalty function. Nucleic acids research. 2004;32(9):2838–2843.

22. Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, Von Haeseler A, et al. Accurate detection of complex

structural variations using single-molecule sequencing. Nature methods. 2018;15(6):461–468.

23. Highnam G, Franck C, Martin A, Stephens C, Puthige A, Mittelman D. Accurate human microsatellite genotypes from

high-throughput resequencing data using informed error profiles. Nucleic acids research. 2013;41(1):e32–e32.

24. Cao MD, Tasker E, Willadsen K, Imelfort M, Vishwanathan S, Sureshkumar S, et al. Inferring short tandem repeat

variation from paired-end short reads. Nucleic acids research. 2014;42(3):e16–e16.

25. Ummat A, Bashir A. Resolving complex tandem repeats with long reads. Bioinformatics. 2014;30(24):3491–3498.

26. Wright C. Medaka; 2020. Medaka - Medaka 1.2.0 documentation. Available from:

https://nanoporetech.github.io/medaka/.

27. Institute B. Indel-based Realignment: Improving the original alignments of the reads based on multiple sequence

(re-)alignment; 2016. GATK talks. Available from:

https://qcb.ucla.edu/wp-content/uploads/sites/14/2016/03/GATKwr12-3-IndelRealignment.pdf.

https://www.biorxiv.org/content/early/2017/04/10/094672
https://www.biorxiv.org/content/early/2021/12/30/2021.12.29.474431
https://www.sciencedirect.com/science/article/pii/0022283682903989
https://github.com/kishwarshafin/pepper/blob/r0.7/docs/performance_evaluation/Oxford_nanopore_r9_whole_genome.md
https://github.com/kishwarshafin/pepper/blob/r0.7/docs/performance_evaluation/Oxford_nanopore_r9_whole_genome.md
https://nanoporetech.github.io/medaka/
https://qcb.ucla.edu/wp-content/uploads/sites/14/2016/03/GATKwr12-3-IndelRealignment.pdf

Dunn et al. Page 25 of 25

28. Kojima K, Kawai Y, Misawa K, Mimori T, Nagasaki M. STR-realigner: a realignment method for short tandem repeat

regions. BMC genomics. 2016;17(1):1–15.

29. Ryan CP. Tandem repeat disorders. Evolution, Medicine, and Public Health. 2019 01;2019(1):17–17. Available from:

https://doi.org/10.1093/emph/eoz005.

30. Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of

two proteins. Journal of molecular biology. 1970;48(3):443–453.

31. Altschul SF, Erickson BW. Optimal sequence alignment using affine gap costs. Bulletin of mathematical biology.

1986;48(5-6):603–616.

32. Krusche P, Trigg L, Boutros PC, Mason CE, Francisco M, Moore BL, et al. Best practices for benchmarking germline

small-variant calls in human genomes. Nature biotechnology. 2019;37(5):555–560.

33. Fan H, Chu JY. A brief review of short tandem repeat mutation. Genomics, proteomics & bioinformatics.

2007;5(1):7–14.

34. Technologies ON. kmer models. GitHub repository. 2017;.

35. Group TSFSW. Sequence Alignment/Map (SAM) Format Specification; 2021. Available from:

https://samtools.github.io/hts-specs/SAMv1.pdf.

36. Suzuki H, Kasahara M. Acceleration of nucleotide semi-global alignment with adaptive banded dynamic programming.

BioRxiv. 2017;p. 130633.

37. Technologies ON. Rebasecalling of SRE and ULK GM24385 Dataset; 2021. Available from:

https://labs.epi2me.io/gm24385_2021.05/.

38. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094–3100.

39. Martin M, Patterson M, Garg S, Fischer S, Pisanti N, Klau GW, et al. WhatsHap: fast and accurate read-based

phasing. BioRxiv. 2016;p. 085050.

https://doi.org/10.1093/emph/eoz005
https://samtools.github.io/hts-specs/SAMv1.pdf
https://labs.epi2me.io/gm24385_2021.05/

	Abstract

