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Abstract
Recent improvements in long-read sequencing accuracy have enabled calling phased small and structural variants
from a single analysis pipeline. Despite this, the current standard tools for variant calling evaluation are only
designed for either small (vcfeval) or large (Truvari) variants. In this work we extend vcfdist – previously a small
variant calling evaluator – to evaluate structural variants, making it the first benchmarking tool to jointly evaluate
phased single-nucleotide polymorphisms (SNPs), small insertions/deletions (INDELs), and structural variants (SVs)
for the whole genome. We find that a joint evaluation reduces measured false negative and false positive variant
calls across the board: by 28.1% for SNPs, 19.1% for INDELs, and 52.4% for SVs over 50 bases. Building on
vcfdist’s alignment-based evaluation, we also jointly analyze phasing accuracy. vcfdist identifies that 43% to 92% of
all flip errors called by standard phasing evaluation tool WhatsHap are false positives due to differences in variant
representations.

Introduction
Prior to the invention of DNA sequencing, structural variants (SVs) larger than 3Mb were observed using a mi-
croscope as early as 1959 [1, 2]. Following the initial sequencing of the human genome in 2001 using short read
technologies [3], however, the focus of most research investigations shifted to single nucleotide polymorphisms
(SNPs) and small insertions and deletions (INDELs). It quickly became apparent that SNPs are the most common
form of genetic variation, accounting for the approximately 0.1% difference in genomic sequence between two in-
dividuals [4], or about 3.1 million SNPs. Short-read technologies were well-poised to investigate these differences,
due to their short read lengths but high per-base accuracy. It has since been determined that though SVs and
INDELs are less common than SNPs, due to their larger size they account for a further 1.4% difference in genome
composition between individuals [5], or about 43.2 million bases.

A few years later, in 2009, the first tools to identify structural variants from short-read alignments were devel-
oped [6, 7, 8]. Although short-read based structural variant callers remain widely used, they have relatively low
recall (10-70%) due to the inherent difficulties of identifying large insertions and deletions from mapped short
reads [9]. The accurate detection of structural variants was greatly assisted by the development of new long-read
sequencing technologies around 2014, most notably from Pacific Biosciences (PacBio) and Oxford Nanopore Tech-
nologies (ONT) [10, 11]. Although early iterations of each technology had much lower per-base accuracy rates of
around 85% [10, 11], longer read lengths led to unambiguous read mappings and more accurate structural variant
calls [12]. Since then, accuracy has improved and both PacBio and ONT can sequence reads above 15Kb with 99
to 99.9% accuracy, rivalling the accuracy of short reads [13, 14]. As shown in Figure 1, this has led to the recent
development of variant calling pipelines built from long-read sequencing data [13].

Once small and structural variants have been called, accurate comparison of variant call files (VCFs) is important
for 1) genome-wide association studies (GWAS) [18, 19], 2) precision medicine [20], 3) variant annotation and ef-
fect prediction [21, 22], 4) sequencing and variant calling pipeline benchmarking [15, 16], and 5) variant database
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Figure 1: (a) Until recently, small and structural variants were called separately using different pipelines because they
required different DNA sequencing technologies: short reads cannot be unambiguously mapped to call many structural
variants accurately, and long reads were not accurate enough for precise small variant calling. (b) Due to recent improvements
in long-read sequencing accuracy, whole genome sequencing (WGS) pipelines can now identify both small and structural
variants (SVs) from the same sequencing data. It is still standard practice to evaluate these variant call categories separately,
however, using vcfeval [15] for small variants and Truvari [16] for large INDELs and SVs. (c) We propose joint benchmarking
of small and structural variant calls in this work, by extending vcfdist [17] to evaluate SVs. By comparing query and truth
variants across size categories, vcfdist is able to detect a greater number of equivalent truth and query variants. This improves
benchmarking accuracy, as shown in Figure 2.

curation [23, 24]. In short, accurate VCF comparison is necessary for studying the impacts of genetic variants,
for understanding the performance of variant calling methods, and for making decisions based on an individual’s
genetic composition. This information can then be used to identify mutations that cause genetic diseases, to select
the best variant calling pipeline for clinical usage, to develop targeted drugs, and to direct future research and
funding.

Although small and structural variant calls can now be made from the same analysis pipeline, the current standard
practice for VCF benchmarking involves separating small variants (smaller than 50bp) from structural variants
(larger than 50bp) prior to benchmarking (see Figure 1). This 50bp threshold was selected for historical and techni-
cal reasons related to the limitations of short-read sequencing, not because a 50bp threshold is biologically significant
in any way [9, 8]. Short-read sequencing’s variant calling performance is poor for INDELs larger than 50bp because
the mappability of a 100bp read containing such a large variant is significantly reduced. For this reason, variants
below and above this size threshold have been historically evaluated separately. Prematurely categorizing variant
calls into small and structural variants prior to benchmarking has a significant impact on measured variant calling
performance (see Figure 2), since several smaller variants are frequently equivalent to one or several larger variants.

The variant call file (VCF) format was first defined in 2011, and a simple exact variant comparison engine was re-
leased at the same time as part of vcftools [25]. vcfeval was introduced by Real Time Genomics (RTG) in 2015, and
is capable of handling equivalent variant representations [15]. It was designed to evaluate unphased small variant
calls, requires exact matches, and evaluates variants up to 1000bp in size. vcfeval has stood the test of time, being
the recommended small variant calling evaluator by the Global Alliance for Genomics and Global Health (GA4GH)
in 2019 [26, 27]. In 2023, vcfdist was released to evaluate locally phased small variant calls from long-read sequenc-
ing pipelines, relaxing vcfeval’s requirement that variants match exactly [17].

Most structural variant calling evaluators similarly allow inexact variant matches. Truvari, for example, considers
two structural variants equivalent if they are located nearby on the reference, are of similar total size, overlap
one another, and have a 70% similar sequence [16]. Truvari assumes all variants within an evaluation region are
phased, ignores small INDELs under 50bp by default, and cannot evaluate SNPs [16]. A recent improvement to
Truvari uses an alignment algorithm (either WFA [28] or MAFFT [29]) to harmonize query and truth VCF variant
representations for benchmarking INDELs and SVs at least 5bp in size in tandem repeat regions [30]. We refer to
these two implementations as Truvari-WFA and Truvari-MAFFT for the remainder of this manuscript.

In this work, we extend vcfdist to be the first tool to jointly evaluate phased SNP, INDEL, and SV calls in whole
genomes. Doing so required major internal restructuring and improvements to vcfdist to overcome scalability issues
relating to memory and compute requirements. We show that performing a joint analysis of all variant sizes leads to
better measured overall accuracy than when evaluating small and structural variants separately, reducing measured
false negative and false positive variant calls by 28.1% for SNPs, by 19.1% for INDELs, and by 52.4% for SVs of over
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50 bases. We find that vcfdist’s alignment-based analysis obtains similar accuracy results to Truvari-MAFFT and
Truvari-WFA, but is able to scale to evaluating whole-genome datasets. Finally, we jointly evaluate SNP, INDEL,
and SV phasing and show that between 42.6% and 92.2% of all phasing flip “errors” that popular phasing analysis
tool WhatsHap reports are false positives. Differing variant representations cause variants to appear incorrectly
phased, though they are not. These false positive flip errors then lead to false positive switch errors. vcfdist is able
to avoid these errors in phasing analysis by using alignment-based variant comparison.

Results
Allowing variant matches across categories increases measured performance.
In order to understand the impact of jointly benchmarking small and structural variants on measured accuracy, we
evaluated three whole genome sequencing (WGS) datasets with vcfdist using several different variant subsets from
the truth and query VCFs. More information on these WGS datasets used can be found in the Methods section and
Supplementary Figure 13. In total, six subsets of each VCF were evaluated: SNPs only, INDELs less than 50 base
pairs (bp) only, SVs larger than 50bp only, small (SNP and INDEL) variants, large (INDEL and SV) variants, and
all (SNP, INDEL, and SV) variants. Figure 2 shows that compared to prior works, which evaluate small variants (in
orange) and structural variants (in red) separately, jointly evaluating all variants (in green) leads to lower measured
error rates for each variant category.

In Figure 2, the hifiasm-dipcall dataset uses alignment parameters which are identical to the draft benchmark Q100-
dipcall VCF (Supplementary Figure 14). As a result, it sees the lowest rates of improvement from a joint evaluation
of small and structural variants: a 3.6% reduction in SNP errors, a 1.2% reduction in INDEL errors, and a 26.1%
reduction in SV errors. The hifiasm-GIAB-TR VCF uses the same assembly as hifiasm-dipcall with a very different
alignment, and therefore sees great benefits from a joint evaluation: a 61.6% reduction in SNP errors, a 34.5%
reduction in INDEL errors, and a 74.4% reduction in SV errors. The Q100-PAV VCF lies somewhere between these
two extremes, with a 19.2% reduction in SNP errors, a 56.6% reduction in INDEL errors, and a 61.6% reduction in
SV errors. These performance improvements originate from cases where multiple smaller variants are found to be
nearly or exactly equivalent to one or several larger variants. Figure 3 shows an example where this occurs and a
joint evaluation of small and structural variants improves measured performance.

Intelligent variant comparison results in better phasing evaluations.
To understand the joint phasing analysis accuracy improvements, we compare vcfdist to WhatsHap, a current
standard for phasing evaluation [31, 32]. WhatsHap’s “compare” module performs one-to-one variant comparisons
between truth and query VCFs to evaluate phasing correctness. For each heterozygous query variant, it searches
for an identical truth variant and notes whether it has the same or opposite phasing. Within each phase block,
WhatsHap then uses a simple dynamic programming algorithm to minimize the total number of flip errors (in
which the phase of a single variant is mismatched) and switch errors (in which the phases of all following variants
are mismatched) [31]. Although this approach seems intuitively correct, it breaks down in repetitive regions of
the genome where differing variant representations can result in false positive reported flip errors. An example is
shown in Figure 4, where WhatsHap reports a flip error within a complex variant even though both truth and query
haplotypes match exactly.

In contrast to WhatsHap, vcfdist performs full alignment of all nearby truth and query variants (a “cluster”), and
is able to discover such equivalencies in variant representations. As a result, vcfdist reports fewer false positive
phasing errors. Table 1 shows the high-level phasing summary metrics reported by vcfdist and WhatsHap. The
Q100-PAV VCF contains the fewest switch and flip errors, likely because it was produced using the same polished
trio-based verkko assembly as the draft benchmark Q100-dipcall VCF. For the hifiasm-dipcall and hifiasm-GIAB-
TR VCFs, vcfdist reports nearly identical switch and flip error rates, likely because they were both produced using
the same trio-based hifiasm scaffold developed by the Human Pangenome Reference Consortium (HPRC) [33].
WhatsHap seems to report a higher combined switch and flip error rate for the hifiasm-GIAB-TR VCF than for
the hifiasm-dipcall VCF because the variant representation used the hifiasm-GIAB-TR callset differs from the draft
benchmark Q100-dipcall VCF and the representation used by hifiasm-dipcall is identical (Supplementary Figure 14).

In Table 1, NG50 reports the largest phased region such that all phased regions of that size and larger cover at
least 50% of the genome. Because none of the query VCFs contain phase blocks, all data is assumed to be perfectly
phased and the NG50 for each dataset is the median length of a human chromosome. The switch NGC50 metric
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Figure 2: We evaluated three phased HG002 whole genome sequencing (WGS) variant callsets (described in Supplementary
Table 13) on the whole-genome GIAB-Q100 BED regions for small variants and SVs using vcfdist. Six different subsets of
each variant call file (VCF) were evaluated: single nucleotide polymorphisms (SNPs) only, insertions and deletions (INDELs)
less than 50 base pairs (bp) only, structural variants (SVs) larger than 50bp only, small (SNP and INDEL) variants, large
(INDEL and SV) variants, and all (SNP, INDEL, and SV) variants. We show that compared to prior works, which evaluate
small variants (in orange) and structural variants (in red) separately, evaluating all variants at once (in green) leads to higher
measured performance for each variant category. (a) false negative rate (FNR) and (b) false positive rate (FPR) decrease
when all variants are evaluated together, across all datasets. This occurs because correctly determining variant equivalence
sometimes requires considering variants from multiple categories. Please note that results are plotted on a logarithmic scale.

Query Truth

SMALL

SV

ALL

SMALL

SV

ALL

4 FP, 5 FN

1 FP, 1 FN

5 TP

× ×× × ×× ×

× ×× × ×× ×

Figure 3: An example from the Q100-PAV HG002 variant callset (chr1:3,287,250-3,287,700 on GRCh38) where using
vcfdist to jointly evaluate small and structural variants improves measured performance. Single nucleotide polymorphisms
(SNPs) are marked with black crosses, and deletions are represented as red rectangles. A joint evaluation of all variants dis-
covers that truth and query haplotypes are identical, despite variant representation differences. By prematurely categorizing
variants prior to evaluation into small and structural variants, this equivalence cannot be determined and variants would be
classified as false positive (FP) and false negative (FN) variant calls instead of true positives (TP).

is calculated after breaking phase blocks on switch errors, and switchflip NGC50 is calculated after additionally
breaking phase blocks on flip errors [34]. As expected, switch and switchflip NGC50 are notably higher for the
Q100-PAV VCF because fewer switch and flip errors are detected.
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CONTIG POS REF ALT FORMAT TRUTH QUERY

chr1 32,653,646 T G GT:BD:BC 0|1:TP:1.0 0|1:TP:1.0

chr1 32,653,657 TTTG T GT:BD:BC 0|1:TP:1.0 .:.:.

chr1 32,653,658 TTG T GT:BD:BC .:.:. 0|1:TP:1.0

chr1 32,653,658 TTG T GT:BD:BC 1|0:TP:1.0 .:.:.

chr1 32,653,659 TG T GT:BD:BC .:.:. 1|0:TP:1.0

chr1 32,653,665 TG T GT:BD:BC .:.:. 1|1:TP:1.0

chr1 32,653,666 G T GT:BD:BC 1|1:TP:1.0 .:.:.

Position 37 46 47 58 59 60 61 66 67

Reference GTTTTTTTT T TTTTTTTTTTT T T G TTTTTT G TTTT

Haplotype 1
Truth GTTTTTTTT T TTTTTTTTTTT T TTTTTT T TTTT

Query GTTTTTTTT T TTTTTTTTTTT T T TTTTTT TTTT

Haplotype 2
Truth GTTTTTTTT G TTTTTTTTTTT TTTTTT T TTTT

Query GTTTTTTTT G TTTTTTTTTTT T TTTTTT TTTT

Figure 4: (a) The variant call file (VCF) for an example WhatsHap false positive flip error call. Each VCF record shows
the variant chromosome (CONTIG) and positions (POS) in addition to the reference (REF) and alternate (ALT) alleles and
their genotypes (GT), the benchmarking decision (BD), and benchmarking credit (BC). In isolation, the two base deletion at
position 32,653,658 appears to be phased differently between the truth and query VCFs (i.e. a flip error). (b) The resulting
haplotype sequences. When this supposed flip error is considered in the context of the surrounding variants, vcfdist is able to
determine that the two sets of truth and query variant calls are equivalent because both truth and query haplotype sequences
are exactly the same. As a result, it is clear that no such flip error has occurred and differences between the truth and query
VCF are due solely to differing variant representations.

Dataset Tool Switches Flips NG50 Switch NGC50 Switchflip NGC50

hifiasm-dipcall
WhatsHap 610 396

vcfdist 494 390 155,717,313 18,275,569 7,790,302

Q100-PAV
WhatsHap 324 433

vcfdist 6 52 155,717,313 137,889,969 112,182,692

hifiasm-GIAB-TR
WhatsHap 1074 1004

vcfdist 494 396 155,717,313 18,275,569 7,709,003

Table 1: Comparison of WhatsHap compare and vcfdist phasing evaluations relative to the Q100-dipcall truth VCF on
the whole-genome GIAB-Q100 BED. WhatsHap consistently reports more switch and flip errors than vcfdist. We show in
Figure 5 that most of these are actually correctly phased.

Figure 5 shows the confusion matrices for switch and flip errors reported by WhatsHap and vcfdist. In Figure 5b,
vcfdist classifies a cluster’s flip error status as NONE when the original haplotypes match exactly, and as FLIP when
both haplotypes match exactly when the phasing of all variants is flipped. Because the full haplotypes match
exactly, the ground truth is known and vcfdist is correct. When neither phasing results in an exact match, the
ground truth is labelled UNKNOWN but vcfdist still makes a classification (NONE/FLIP) based on how much closer the
edit distance between the truth and query haplotypes is when all variant phasings are flipped. Because the hifiasm-
dipcall dataset uses the same variant representation as the Q100-dipcall ground truth, there are few WhatsHap
false positive flip errors for this VCF. Once the query VCF variant representation differs from the ground truth,
however, the Q100-PAV and hifiasm-GIAB-TR datasets show a large number of WhatsHap false positive flip errors
in Figure 5b.

Because vcfdist enforces local phasing of variants within a cluster, it may miss single-variant flip errors when the
phasing of one of several variants in a cluster is incorrect. In this case, the ground truth would be labelled UNKNOWN
because neither phasing would result in the truth and query haplotypes matching exactly. A manual investigation
of a random subset of these cases with unknown ground truth in Figure 5c shows that in most of these cases, no flip
error has occurred. This shows that although vcfdist reports far fewer flip errors in total than WhatsHap, few of
these are false negatives. The majority of cases with unknown ground truth are likely also WhatsHap false positives.

vcfdist enables highly accurate comparisons with reasonable performance.
Next, we compare vcfdist to prior works vcfeval [15] and Truvari[16], designed for evaluating small and structural
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Figure 5: (a) Switch error confusion matrices for vcfdist and WhatsHap for all three whole genome sequencing datasets,
evaluated on the GIAB-Q100 BED. Note that WhatsHap considers flips errors to be equivalent to two consecutive switch
errors, whereas vcfdist counts each separately. (b) Flip error confusion matrices for vcfdist and WhatsHap. Note that cluster
ground truths are only labelled as NONE or FLIP when absolutely certain, i.e. if both haplotypes with all variants using either
the original or flipped phasing match exactly. As a result, many WhatsHap false positive flip calls can be identified. An
example is shown in Figure 4. (c) For UNKNOWN clusters, we manually examined a random subset of 16 clusters from each
VCF to determine the ground truth and plot confusion matrices for WhatsHap and vcfdist.

variants, respectively. We also benchmark the performance of Truvari-MAFFT and Truvari-WFA, two recently de-
veloped extensions of Truvari which realign truth and query variants to one another using MAFFT [29] or WFA [28]
for more accurate benchmarking. This achieves similar accuracy to vcfdist but changes the total counts of truth
and query variants, making comparisons across different evaluation tools and pipelines difficult. Additionally, all
current versions of Truvari do not evaluate SNPs.

At the other end of the spectrum, vcfeval only evaluates variants smaller than 1000 bases. For this reason, we
restrict the maximum variant size to 1Kb in Figures 6 and 7. As variant length increases in Figure 6, vcfeval
reports an increasingly high error rate compared to vcfdist (47.5% higher for SNPs, 119% higher for INDELs, and
306% higher for SVs). The same trend can be seen in Figure 7. This is because vcfeval requires truth and query
variants to match exactly (which is less likely for larger variants), whereas vcfdist and Truvari do not. A more
lenient matching heuristic will lead to strictly fewer false positives and false negatives in Figures 6 and 7. To avoid
falsely inflating vcfdist’s performance, we set vcfdist’s credit threshold to 70% in order to match Truvari’s sequence
similarity threshold of 70% as closely as possible. In fact, Truvari and its WFA/MAFFT variants are more lenient
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than vcfdist in determining variant equivalence because they consider partial allele matches to be true positives,
whereas vcfdist does not (Figure 8).

Despite this, for INDELs and SVs, vcfdist on average measures fewer false negatives and false positives than Tru-
vari’s most exact implementation: Truvari-MAFFT (2.7% fewer INDEL errors, and 34.3% fewer SV errors). vcfdist
has the added benefits of not modifying the variant representations during benchmarking, evaluating SNPs in ad-
dition to INDELs and SVs, and scaling to analyses on whole genome datasets. The evaluations in Figure 6 were
restricted to tandem repeat regions (GIAB-TR BED) because Truvari-WFA and Truvari-MAFFT did not complete
after several days when run on the most recent GIAB benchmarking regions (GIAB-Q100 BED). Figure 7 shows
this whole-genome evaluation, excluding Truvari-WFA and Truvari-MAFFT.

Lastly, Truvari’s performance more closely matches that of Truvari-WFA and Truvari-MAFFT on the hifiasm-dipcall
VCF than the Q100-PAV or hifiasm-GIAB-TR VCFs. Truvari counted 17.8% fewer INDEL errors and 6.5% fewer
SV errors on the hifiasm-dipcall VCF than Truvari-MAFFT, but 152% more INDEL errors and 189% more SV
errors than Truvari-MAFFT on the other two VCFs. This is likely because the hifiasm-dipcall VCF and the ground
truth Q100-dipcall VCF use the same variant representation. This suggests that benchmarking variant calls with
Truvari is influenced more by the variant representation than other tools, which makes sense because Truvari-WFA
and Truvari-MAFFT were developed to mitigate this issue.
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Figure 6: Comparison of vcfdist with prior work in terms of measured (a) false negative rate (FNR) and (b) false positive
rate (FPR) on the GIAB-TR BED, which contains tandem repeat regions covering 6.9% of the human genome. Note that
Truvari, Truvari-WFA, and Truvari-MAFFT do not evaluate SNPs, and that all results are plotted on a logarithmic scale.

In comparison to Truvari-WFA and Truvari-MAFFT, vcfdist achieves a similar improvement in benchmarking ac-
curacy but with greater scalability in terms of the size of evaluated regions. However, we find that Truvari-MAFFT
and Truvari-WFA scale better with variant size, since they use more memory-efficient alignment algorithms. We
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Figure 7: Comparison of vcfdist with prior work in terms of measured (a) false negative rate (FNR) and (b) false positive
rate (FPR) on the GIAB-Q100 BED, which contains benchmarking regions covering 90.3% of the human genome. Truvari-
WFA and Truvari-MAFFT are not shown because they did not finish running on the GIAB-Q100 BED. Note that Truvari
does not evaluate SNPs, and that all results are plotted on a logarithmic scale.

plan to improve this in future releases of vcfdist, but for now the maximum recommended variant length is 10Kb.
Table 2 shows the runtimes of vcfdist, vcfeval, Truvari, Truvari-WFA, and Truvari-MAFFT on our server.

GIAB-TR BED Runtime GIAB-Q100 BED Runtime
hifiasm-dipcall Q100-PAV hifiasm-GIAB-TR hifiasm-dipcall Q100-PAV hifiasm-GIAB-TR

vcfdist 46:44 53:23 1:00:53 1:15:19 1:25:15 1:34:55
vcfeval 13:46 50:40 1:12:09 14:40 50:39 46:18
Truvari 16:44 17:07 16:16 11:19 12:21 11:08

Truvari MAFFT 27:54 34:01 32:50 * * *
Truvari WFA 25:52 38:56 46:12 * * *

Table 2: Runtime results for vcfdist, vcfeval, and Truvari in (hh:)mm:ss format. Although Truvari-MAFFT and Truvari-
WFA complete efficiently on the tandem repeat GIAB-TR BED, they did not complete on the whole-genome GIAB-Q100
BED due to the large region sizes.

Both Truvari and vcfdist perform alignment-based evaluation, which allows detection of variant calls that are mostly
but not exactly correct. This is crucial for identifying large structural variants wthat are less likely to be called
perfectly. In contrast, vcfeval finds matching subsets of truth and query variants that result in the exact same
haplotype sequence. This computation would be less expensive if not for the fact that vcfeval does not assume
the input VCFs are phased. Because there are 2n possible phasings for n heterozygous variants, vcfeval’s runtime
depends more closely on the number and representation of variants than either Truvari or vcfdist. As a result,
vcfeval has both the slowest and fastest runtimes for evaluation on the GIAB-TR BED, because the hifiasm-dipcall
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VCF uses an identical variant representation to the ground truth and the hifiasm-GIAB-TR VCF uses a wildly
different variant representation. In some cases, the number of nearby heterozygous variants is too large, and vcfeval
fails to complete. This happened 1338 times on the hifiasm-dipcall VCF, 1347 times on the Q100-PAV VCF, and
6778 times on the hifiasm-GIAB-TR VCF.

The runtimes of vcfdist and Truvari, on the other hand, depend closely on the size of the sequences to be aligned.
For Truvari’s WFA and MAFFT refine options, variants are grouped by BED region and the entire BED region is
realigned. This works well for the tandem repeat GIAB-TR BED, which covers 6.89% of the human genome and
has 1,706,853 regions with an average region size of 125 bases. However, it does not scale to the GIAB-Q100 BED,
which covers 90.3% of the human genome and has 300 regions with an average region size of 9,296,764 bases. As a
result, Truvari-WFA and Truvari-MAFFT do not complete and are marked with a * in Table 2.

Clustering algorithms offer a trade-off between evaluation accuracy and runtime.
For alignment-based variant calling evaluation tools it is necessary to group variants together into many independent
clusters that can be evaluated individually, since aligning entire chromosomes is currently computationally infeasi-
ble. In order to understand the impact of variant clustering on the measured accuracy and runtime of evaluation
tools, we explore and compare several different options for variant clustering. Truvari clusters variants by BED
region during evaluation, which works well when studying many small sub-regions of the genome such as tandem
repeats but does not scale to whole-genome evaluation of larger regions. vcfeval does not cluster variants since it is
not alignment-based. Requiring exact variant matches allows it to use a branch-and-bound approach instead. For
vcfdist, we implemented two options: a simple yet flexible variant clustering heuristic, and a more sophisticated
clustering algorithm that attempts to minimize computation while retaining perfect accuracy.

The simplest option that vcfdist offers is to group all variants less than n bases apart into a single cluster. We
call this “gap n” clustering, as shown in Table 3. The average region size, runtime, and measured variant calling
performance all depend highly upon n. Using a gap of n = 10 results in the fastest runtime, but at the cost of
significantly lower measured SNP, INDEL, and SV accuracy. A larger gap of 100 is a reasonable balance between
performance and accuracy, and only SV accuracy is noticeably impacted. A much larger gap of 500 almost com-
pletely eliminates cases where true positive variants are mistakenly labelled false positives due to equivalent query
and truth variants not being clustered together, but at the cost of a much higher runtime.

We develop our own clustering method based on bidirectional wavefront alignment (biWFA) [35] that dynamically
clusters variants based on whether truth and query variants have the potential to be equivalent. It aligns leftwards
and rightwards from each variant cluster, determining the span of reference bases that can be influenced by the
current cluster of variants. This algorithm is able to find long-range variant dependencies that may span repetitive
regions of the genome longer than 500bp, while also splitting up independent variants that are nearby on the ref-
erence. As shown in Table 3, this approach achieves even higher accuracy than gap 500 clustering, whilst running
more than 10× faster end-to-end.

Clustering approach None GIAB-Q100 BED Gap 10 Gap 100 Gap 500 WFA

Total regions 24 300 4,363,640 3,343,352 1,503,147 4,259,395
Total regions size 3,088,269,832 2,789,029,111 18,548,559 69,515,796 550,160,873 24,589,303
Mean region size 128,677,910 9,296,764 4.25 20.8 366 5.77
Max region size 248,956,422 127,461,328 2,522 19,730 65,503 29,663

SNP F1 score * * 0.9644 0.9719 0.9722 0.9723
INDEL F1 score * * 0.9415 0.9626 0.9631 0.9631

SV F1 score * * 0.8244 0.9427 0.9514 0.9516
Runtime * * 00:02:57 00:11:53 11:25:06 01:04:37

Table 3: The efficiency and measured accuracy of evaluating the Q100-PAV VCF with vcfdist on the Q100-dipcall ground
truth VCF using different clustering approaches. Accuracy entries marked with * were unable to be computed due to long
runtimes caused by large clustered regions. Clustering variants together whenever they are less than 10 bases apart (“Gap
10”) is the most efficient method, although its accuracy is significantly reduced. Bidirectional wavefront alignment (biWFA)
based clustering achieves the highest accuracy with reasonable performance.

Validation of vcfdist.
Lastly, we compare vcfdist to existing variant calling evaluation tools in order to verify its correctness. Following
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variant normalization (described in the Methods section), we organize all variants evaluated by vcfdist, vcfeval,
and Truvari in Figure 8a. Variants are then categorized based on the apparent reason for differences in evaluated
correctness between the three tools and counted. An example of each of the eight discovered categories are shown
in Figure 8b, and described in further detail below.

(a)

(b)

Category Count
Allele
Match

Different
Thresholds

Complex
Variant

Pick
Single

Flip
Error

Backtracking
Tie

Adjacent
Variants

No Real
Variants

all agree FP 315
only vcfeval calls TP 6 6
only Truvari calls TP 213 199 6 8
only vcfdist calls TP 23 3 8 11 1

all agree TP 35,229
only vcfeval calls FP 647 329 301 8 9
only Truvari calls FP 8 6 1 1
only vcfdist calls FP 48 25 3 2 4 14

POS REF ALT FORMAT
VCFEVAL
TRUTH

VCFEVAL
QUERY

TRUVARI
TRUTH

TRUVARI
QUERY

VCFDIST
TRUTH

VCFDIST
QUERY

Allele
Match

40153469 GTATA G GT:BD:BK 0|1:FN:am 1|1:FP:am 0|1:TP:am 1|1:TP:am 0|1:TP:gm 0|1:TP:gm
40153469 GTATA G GT:BD:BK .:.:. .:.:. .:.:. .:.:. .:.:. 1|0:FP:.

Different
Thresholds

39864946 G GTTT GT:BD:BC 0|1:FN:0.0 .:.:. 0|1:TP:.75 .:.:. 0|1:FN:.67 .:.:.
39864946 G GTTTT GT:BD:BC .:.:. 0|1:FP:0.0 .:.:. 0|1:TP:.75 .:.:. 0|1:FP:0.0

Complex
Variant

11753707 C CGTGTGTGTGT GT:BD:BC 1|0:FN:0.0 .:.:. 1|0:FN:0.0 .:.:. 1|0:FN:.38 .:.:.
11753744 G GTGTGTA GT:BD:BC 1|0:TP:1.0 1|0:TP:1.0 1|0:TP:1.0 1|0:TP:1.0 1|0:FN:.38 1|0:FP:0.0

Pick
Single

18945947 C CAGAGAGAGAGAG GT:BD:BC .:.:. 1|0:FP:0.0 .:.:. 1|0:FP:0.0 .:.:. 1|0:TP:.80
18945947 C CAGAGAGAGAG GT:BD:BC 1|1:FN:0.0 0|1:FP:0.0 1|1:TP:1.0 0|1:TP:1.0 0|1:TP:1.0 0|1:TP:1.0
18945947 C CAGAGAGAGAG GT:BD:BC .:.:. .:.:. .:.:. .:.:. 1|0:TP:.80 .:.:.

Flip
Error

33052546 G GTA GT:BD:BC 1|0:TP:1.0 1|0:FP:0.0 1|0:TP:1.0 1|0:TP:1.0 1|0:TP:1.0 1|0:TP:1.0
33052546 GTG G GT:BD:BC 0|1:TP:1.0 .:.:. 0|1:FN:0.0 .:.:. 0|1:FN:0.0 .:.:.
33052548 G A GT:BD:BC .:.:. 0|1:TP:1.0 .:.:. .:.:. .:.:. 0|1:FP:0.0

Backtracking
Tie

23651946 G GC GT:BD:BC 0|1:TP:1.0 0|1:TP:1.0 0|1:TP:1.0 0|1:TP:1.0 0|1:TP:1.0 0|1:FP:0.0
23651955 C CC GT:BD:BC .:.:. 0|1:FP:0.0 .:.:. 0|1:FP:0.0 .:.:. 0|1:TP:1.0

Adjacent
Variants

35755334 C CAT GT:BD:BC 0|1:FN:0.0 0|1:TP:1.0 0|1:TP:1.0 0|1:TP:1.0 0|1:TP:1.0 0|1:TP:1.0
35755334 C CATAT GT:BD:BC .:.:. 0|1:TP:1.0 .:.:. 0|1:FP:0.0 .:.:. 0|1:FP:0.0
35755334 C CATATAT GT:BD:BC 0|1:TP:1.0 .:.:. 0|1:FN:.67 .:.:. 0|1:FN:.67 .:.:.

No Real
Variants

64125403 ACT... A GT:BD:BC 1|0:TP:1.0 1|0:TP:1.0 1|0:TP:1.0 1|0:TP:1.0 1|0:FN:0.0 1|0:FP:0.0
64125436 T TCA... GT:BD:BC 1|0:TP:1.0 1|0:TP:1.0 1|0:TP:1.0 1|0:TP:1.0 1|0:FN:0.0 1|0:FP:0.0

Figure 8: (a) A comparison of INDEL and SV variant calling evaluation by vcfdist, vcfeval, and Truvari, restricting to
chr20 of the GIAB-TR tandem repeats BED. SNPs were excluded because they were not evaluated by Truvari. Prior to
evaluation, truth and query VCFs were normalized using phab from Truvari-v4.0. This means that the “Truvari” results
reported in this figure are largely equivalent to Truvari-MAFFT. Variants that were not evaluated uniformly by the three
tools are categorized and counted. (b) A simple real example for each of the eight categories of variants that were evaluated
differently between tools. Each variant call file (VCF) entry shows the variant position (POS), reference and alternate alleles
(REF and ALT), and supplementary information such as genotype (GT), benchmarking decision (BD), benchmarking category
(BK, which is either a genotype (gm) or allele (am) match), and benchmarking credit (BC). Each category is described in greater
detail within the manuscript text, below.

Firstly, all three tools handle allele matches differently, which accounts for the majority of differences in Figure 8a.
Truvari will match a query homozygous variant to a truth heterozygous variant and consider both to be true pos-
itives. vcfeval will perform the same match but consider the variants to be a false positive and false negative.
vcfdist will match the heterozygous variant to one haplotype of the homozygous variant, consider both to be true
positives, and then consider the second haplotype of the query homozygous variant to be a false positive. None
of thes methods is best; rather, each has strengths for certain applications. We caution that users consider these
performance differences based on their downstream goals.

The second most common area of disagreement between tools stems from the fact that they have different thresholds
for considering variant calls to be true positives. For example, vcfeval requires variants to match exactly, whereas
vcfdist requires variants to have a partial credit score above 0.7 and Truvari requires a sequence similarity above 0.7.
For certain edge cases, such as where a length three deletion is called length four, even Truvari and vcfeval may differ.

The next most common differences are intentional implementation differences between the tools. In particular,
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vcfdist refuses to split a complex variant into multiple variants and consider only a subset of those to be correct.
Truvari, by default, only allows a variant to participate in one match (with the ––pick single parameter), re-
gardless of allele count. vcfeval is the only tool that does not enforce local phasing and allows flip errors of nearby
variants to occur.

Lastly, there are rare cases where unintentional implementation differences lead to slightly differing results. Not all
backtracking algorithms behave identically, leading to cases in which different algorithms will adjudicate which of
a pair of variants is a false positive differently. Then come the differences due to directly adjacent variants. For
example, only vcfeval allows two separate insertions at the same exact location on the same haplotype. Interestingly,
after phab [30] normalization (described in then Methods section), there are several cases where the truth variants
reported are exactly equivalent to no variants at all. In these cases, vcfdist reports these variants to be false positives
and false negatives whereas Truvari and vcfeval consider them to be true positives.

Discussion
In this paper, we demonstrate that evaluating small and structural variants together is necessary for discovering
equivalent sets of truth and query variant calls. Furthermore, we show that intelligent variant comparison, which is
able to identify equivalent variant representations, is important for accurate phasing analyses. We then show that
vcfdist is now able to scale to whole-genome analysis of phased SNPs, INDELs, and SVs with improved accuracy
over prior work. Lastly, we discuss our exploration of variant clustering, which can be used to further improve the
efficiency of variant calling evaluation tools.

As variant calling performance improves and increasingly complex clusters of variants are evaluated, minor differ-
ences in the implementations of evaluation tools such as Truvari, vcfeval, and vcfdist begin to significantly impact
the results. Currently, the way each tool handles partially correct variant calls differs greatly. Partial correctness
can occur in many ways: a single insertion is called mostly but not entirely correct, a homozygous variant is called
heterozygous (genotype error), a deletion is called with the incorrect length, a heterozygous variant is called on
the wrong haplotype (flip error), or only a subset of several variants that comprise a complex variant are called.
In Figure 8, we show that differences in how these cases are handled lead to significant differences in the reported
summary metrics (Figure 7). Ideally, as a community we would define a standard methodology to handle each of
these cases and clearly delineate how to count and categorize these errors. Unfortunately, there are both advan-
tages and disadvantages for each method of categorizing and counting these errors, and the best method to use may
depend on the end application. In the absence of a standardized approach, it is important that users of variant
calling evaluation tools understand how each tool handles these cases, and the impact that may have on their results.

In this work, we have revisited some of the earlier design decisions we made in vcfdist v1. Although we still believe
that total alignment distance is a useful supplementary metric to precision and recall curves, we now skip this
computation by default, and allow re-enabling it with the ––distance parameter. We believe that stratifying pre-
cision and recall curves by variant size offers many of the same benefits, with a more easily interpretable result. We
have also replaced variant calling partial credit with a credit threshold ––credit-threshold [0.7]. Partial credit
is still calculated, but rather than assigning partial false and true positives (which is unnecessarily complicated
and non-intuitive), we allow the user to select a partial credit threshold above which variants are considered true
positives and below which variants are considered false positives. This more closely aligns with the behaviour of
other structural variant calling benchmarking tools such as Truvari. Lastly, vcfdist no longer realigns truth and
query variants to a standard normalized representation by default. We found this behaviour to be undesirable in
Truvari-WFA and Truvari-MAFFT because it complicates comparison with other pipelines. vcfdist still retains this
capability, however, which can be enabled using ––realign-query and ––realign-truth. Although we no longer
enable this feature by default, we urge individuals benchmarking variant calling pipelines to be aware of the variant
representations used in their truth and query VCFs.

At the moment, vcfdist is designed to compare phased variants from a single sample query VCF to a truth VCF.
We plan to extend vcfdist in the near future to handle unphased variant calls as well, since many genomic datasets
do not contain phasing information. Along a similar vein, we would like for vcfdist to be able to work with multi-
sample population VCFs for use in genome wide association studies (GWAS). We believe joint evaluation of small
and structural variants will be incredibly valuable in this context. In order to make this a reality, we will need to
continue to improve the efficiency of vcfdist. The alignment-based calculation of precision and recall will need to be
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shifted to a wavefront alignment based implementation [28], and when large or many nearby variants are present,
we may need to sacrifice accuracy in order to improve efficiency.

Methods
All scripts described below are available in the Github repository https://github.com/TimD1/vcfdist [36] in the
analysis-v2/ subdirectory.

Datasets.
Information regarding the availability of each input dataset is provided in the Data Availability section of this
manuscript.

Q100-dipcall VCF: The v0.9 Q100-dipcall draft benchmark VCF and its associated GIAB-Q100 BED containing
small and structural variants were used as the ground truth VCF throughout this manuscript [13]. They were created
during a collaboration between the Telomere-to-Telomere Consortium (T2T, https://sites.google.com/ucsc.
edu/t2tworkinggroup/home), the Human Pangenome Reference Consortium (HPRC, https://humanpangenome.
org/), and the Genome in a Bottle Consortium (GIAB, https://www.nist.gov/programs-projects/genome-bottle)
in an attempt to establish a diploid whole genome benchmark that is perfectly accurate. The term “Q100” refers to a
Phred quality score [37] of 100, or one error per ten billion bases (i.e. zero expected errors per human genome). The
v0.9 draft benchmark contains many errors, but improvements are still being made towards this ultimate goal. A
combination of data from Oxford Nanopore Technologies (ONT), Pacific Biosciences high-fidelity sequencing (HiFi),
Strand-Seq, and Hi-C were used in combination with the trio-based verkko assembler [13] and manual review to
create a high-quality assembly. Lastly, dipcall [38] was used to generate a VCF of this assembly relative to the
GRCh38 reference FASTA.

Q100-PAV VCF: The same verkko assembly [13] was then used by researchers at the National Institute of Standards
and Technology (NIST, https://nist.gov) to generate a second VCF using the Phased Assembly Variant Caller
(PAV) [39]. For this reason, the Q100-PAV variant phasings match very closely with the Q100-dipcall phasings,
as can be seen in Table 1. Note that by default, PAV merges some non-identical haplotypes, resulting in inexact
variant calls.

hifiasm-dipcall VCF: The hifiasm-dipcall VCF was created by the HPRC using a combination of ONT ultra-long
(UL), HiFi, Hi-C, and Bionano optical mapping data [33]. First, the trio-based hifiasm assembler [40] was used
to create the initial assembly using HiFi and Hi-C data. Bionano optical mapping data was used to verify these
scaffolds, and a combination of manual variant curation and polishing with ONT-UL data was used to generate
the final assembly [33]. Lastly, dipcall [38] was used to generate a VCF of this assembly relative to the GRCh38
reference FASTA.

hifiasm-GIAB-TR VCF: The v4.20 hifiasm-GIAB-TR VCF and its associated GIAB-TR BED were generated by
the Genome In A Bottle Consortium (GIAB) using the same hifiasm assembly, in addition to custom scripts that
use minimap2 and paftools [41]. The methodology is described in detail in [30], and was part of an effort to create a
high-quality tandem repeat benchmark. Because the same hifiasm assembly was used, the phasing analysis results
of hifiasm-GIAB-TR closely matches hifiasm-dipcall in Table 1, but the variant representation is much different than
the other VCFs, shown in Supplementary Figure 14 (see https://github.com/ACEnglish/adotto/discussions/4
for details).

Preprocessing.
Prior to evaluation, multi-allelic variants were split using bcftools norm v1.17 [42] with the -m-any parameter.
Where required, the HG002 sample was extracted from the original VCF into a single-sample VCF using bcftools
query.

Separate vs. joint evaluation of small and structural variants.
For each dataset, each subset of variants – SNP, INDEL, SV, SMALL (SNP and INDEL), LARGE (INDEL and
SV), and ALL (SNP, INDEL, and SV) – was first extracted into a separate VCF using bcftools view v1.17 [42].
SVs were defined as insertions or deletions greater than or equal to 50 base pairs in size. INDELs are below this
size threshold. vcfdist v2.3.1 [36] was used to compare each VCF to the Q100-dipcall ground truth within the
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GIAB-Q100 benchmarking regions. Scripts available in the small_sv_all/ directory of our Github repository [36]
were used to calculate and plot the false negative and false positive rates for each variant categorization within each
VCF. The results are shown in Figure 2.

Description of vcfdist phasing analysis.
The original vcfdist v1 release contained an experimental phasing analysis algorithm that was untested and unready
for production. In this work we extended the original algorithm, described in [17], to perform a proper evaluation
of phasing. First, we added support for phase blocks using the input VCFs’ FORMAT:PS fields. Unlike most other
tools, vcfdist allows the ground truth VCF to contain phase sets as well. Using the reported phase sets, vcfdist
now correctly identifies switch and flip errors. In addition to reporting detailed switch and flip error information,
vcfdist also calculates several useful summary metrics such as phase block NG50 (breaking regions on new phase
blocks), switch NGC50 (breaking regions on new phase blocks and switch errors), and switchflip NGC50 (breaking
regions on new phase blocks, switch errors, and flip errors). The NG50 metric reports the largest region such
that all regions of that size and larger cover at least 50% of the genome. Lastly, we added a phasing threshold so
that variant clusters are considered unphased unless one phasing significantly improves the cluster’s edit distance
from the ground truth versus the other phasing. The default value is set at –-phasing-threshold [0.6], or 60%
reduction in edit distance, although the results from Figure 5c suggest that a higher threshold may be appropriate.

Phasing analysis comparison with WhatsHap.
First, because WhatsHap does not allow providing a BED file to mask analysis regions, we use bcftools filter v1.7 [42]
to restrict all three VCFs to the GIAB-Q100 benchmarking BED regions. We then performed phasing analyses
using WhatsHap v2.1 [31] and vcfdist v2.3.1 [36]. We then used several scripts, available in the phasing/ directory
of our Github repository [36], to compare and plot the resulting flip and switch errors reported by each tool. The
results are shown in Figure 5 and Table 1. In Figure 5, a random subset of 16 clusters with unknown phasing
from each VCF was selected and manually examined in order to define a ground truth and compare vcfdist’s and
WhatsHap’s performances on this subset of cases.

Accuracy comparison of variant calling evaluation tools.
In order to determine the differences in variant evaluation between vcfdist, vcfeval, and Truvari, we evaluated all
three datasets using each tool on the GIAB-TR and GIAB-Q100 BEDs. We ran vcfdist v2.3.1 [17] with -l 1000 to
limit the maximum SV length because vcfeval does not consider variants larger than 1000 bases. We ran rtg vcfeval
v3.12.1 [15] with the ––ref-overlap and ––vcf-score-field=QUAL parameters. We ran Truvari v4.2.0-rc1 with
the following command line options: ––no-ref a ––sizemin 1 ––sizefilt 1 ––sizemax 1000 ––pick single
––typeignore ––dup-to-ins. We then used several scripts, available in the vs_prior_work/ directory of our
Github repository [36], to compare and plot the false negative and false positive rates of each tool. These results
are shown in Figures 6 and 7.

Validation of vcfdist.
In order to validate the correctness of vcfdist’s reported variant calling results, we needed a way to compare how
vcfdist classified a single variant to the classifications reported by prior works vcfeval and Truvari-MAFFT for that
same variant. We chose to compare against Truvari-MAFFT instead of Truvari because it is more accurate [30].
Unfortunately, Truvari-MAFFT changes the representations of the input truth and query variants, making it diffi-
cult to compare benchmarking results across tools. Instead of directly using Truvari-MAFFT, we used a deprecated
but equivalent workflow from Truvari v4.0.0 that involves normalizing variant representations using Truvari’s phab
module (which uses MAFFT) followed by plain Truvari evaluation. This approach enabled us to directly compare
the decisions made by vcfdist, vcfeval, and Truvari on the exact same set of variants while also enabling Truvari to
be more accurate.

We first normalized chr20 of the GIAB-TR BED from each of our three VCFs with the truth VCF using Truvari
v4.0.0 phab (MAFFT). We then converted these VCFs into single sample VCFs of the desired format and split up
multi-allelic variants using bcftools reheader, norm, and view v1.17 [42]. Afterwards, we evaluated each VCF using
vcfdist v2.3.1 [17], vcfeval v3.12.1 [15], and Truvari v4.1.0 [16]. Several scripts, available in the phab_cm/ directory
of our Github repository [36], were used to generate the confusion matrices, shown in Supplementary Figure 10.
The numerical results are shown in Figure 8.

Improvements to the vcfdist clustering algorithm.
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A naive variant comparison algorithm would compare each query variant to a single reference variant individually
in order to discover matches. While this approach works for the majority of variant calls, there are cases where
several query variants are equivalent to one or many truth variants (Supplementary Figure 11a). Several examples
of this are shown in Supplementary Figure 9. This is especially true for repetitive regions of the genome, or as the
representations of the truth and query VCFs diverge. In order for a benchmarking tool to recognize these cases of
complex equivalency, all the variants involved must be evaluated at once in a group, or “cluster”.

The clustering algorithm employed by vcfdist discovers all cases in which variants could participate in a complex
match and groups those variants together into a single cluster. vcfdist achieves this by first initializing each cluster
to a single variant. Next, the leftmost and rightmost reference positions that can be reached by aligning through
each cluster with an alignment cost less than or equal to the cost of the current variant representation are recorded.
If the reach of a cluster overlaps with the reach of a neighboring cluster, the two clusters are merged. This occurs
until all clusters have stabilized.

In order to handle structural variants, vcfdist’s original clustering algorithm (described briefly above and in greater
detail in [17]) was required to undergo significant changes to improve efficiency and reduce memory usage. Firstly,
the bidirectional Smith-Waterman-Gotoh [43] algorithm used to calculate cluster left and right reaches was con-
verted to a wavefront alignment based [28] equivalent in order to reduce memory usage from O(n2) to O(n). Next,
the alignment cost of each cluster was recalculated (and lowered, when possible) following each cluster merge in
order to reduce unnecessary cluster growth in following iterations. The left and right reaches of each cluster were
cached across iterations and only recalculated following a merge. A greedy merging strategy was employed to merge
multiple clusters at once when possible. Cluster reaches were calculated using iterative reach doubling to avoid
unnecessary computation. Lastly, multi-threading support was added for clustering.

Comparison of vcfdist clustering methods.
vcfdist v2.3.1 was run with “gap n” clustering for n = (10, 100, 500) in addition to the default biWFA clustering
using the command line options ––simple-cluster ––cluster-gap 10. Wall clock runtime was measured using
the GNU time command on an Intel Xeon E5-2697 v3 CPU, with 56 threads and 64GB RAM. Scripts used to cal-
culate the cluster sizes shown in Table 3 from vcfdist’s verbose outputs are available in the clustering/ directory
of our Github repository [36].

Extending vcfdist to evaluate structural variants.
In order to evaluate larger structural variants using vcfdist, we made several changes such as introducing command
line parameters ––smallest [1] and ––largest [5000] to control the size of variants evaluated by vcfdist. We also
added summary metric reporting for structural variants separately from INDELs and added the ––sv-threshold
[50] flag to control the threshold for this classification. In addition to the numerous clustering efficiency improve-
ments mentioned above, we decreased the memory usage of the precision and recall calculations. Since each cluster
can be evaluated independently, we also added multi-threading and work balancing based on cluster size for all
intra-cluster computations.

Runtime comparison of variant calling evaluation tools.
Variants larger than 1000bp were pre-filtered using bcftools view v1.17 and inversions were filtered using GNU grep
v2.20 because otherwise they significantly impact the runtime of Truvari-WFA and Truvari-MAFFT (even when
excluded from the analysis with ––sizemax 1000). Wall clock runtime was measured using the GNU time command
on an Intel Xeon E5-2697 v3 CPU, with 56 threads and 64GB RAM. The scripts with the exact parameters used to
run each tool are available in the vs_prior_work/ directory of our Github repository [36]. The results are shown
in Table 2.

Data Availability
All input data for this manuscript have been deposited in a Zenodo repository, publicly available at the following
URL: https://doi.org/10.5281/zenodo.10557082 [44]. The deposited data includes the Q100-dipcall VCF,
Q100-PAV VCF, hifiasm-dipcall VCF, hifiasm-GIAB-TR VCF, GIAB-Q100 BED, GIAB-TR BED, and the GRCh38
reference FASTA.
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Code Availability
All code for vcfdist and the benchmarking pipelines developed for this manuscript are available in a public Github
repository (https://github.com/TimD1/vcfdist) under a permissive GNU GPLv3 license. The repository has
also been deposited in Zenodo, at https://doi.org/10.5281/zenodo.8368282 [36].
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Figure 9: An example of different variant clustering methods. The span of each cluster is shown in gray. Equivalent
sets of truth and query variants are depicted in different colors, and one example from each category is included. The four
categories describe whether a single or multiple truth or query variants participate in the match. For vcfdist to determine
variant equivalence, all dependent variants must be located in the same cluster. Incorrectly separating variants into different
clusters results in lower measured accuracy. Unnecessarily grouping variants together results in larger clusters and more
expensive evaluation. This tradeoff is shown in Table 3.
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Figure 10: Truvari, vcfeval, and vcfdist variant classification following Truvari-v4.0.0 phab normalization of (a) single
nucleotide polymorphism (SNP), (b) insertion/deletion (INDEL), and (c) structural (SV) variants on the GIAB-TR BED.
Note that all Truvari SNPs are classified as false positives (FP), since Truvari does not evaluate SNPs. A significant number
of INDELs and SVs are considered false positives by vcfeval but true positives (TP) by vcfdist and Truvari because the
latter two tools are alignment based and do not require exact matches. Otherwise, all three evaluation tools are largely in
agreement. We explore the rare cases of disagreement in Figure 8.
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Figure 11: (a) As variant representation becomes increasingly different from the Q100-dipcall ground truth (shown in
Supplementary Figure 14), the fraction of variants requiring complex comparisons involving multiple truth and query variants
increases. (b) vcfdist’s biWFA clustering algorithm groups possibly dependent variants (yellow) together, and starts a new
cluster when two adjacent variants are independent (red). Of the variants clustered together, only a small fraction are actually
dependent (green). However, grouping these variants together is necessary to correctly determine equivalence between sets
of truth and query variants.
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SMALL
CONTIG POS REF ALT FORMAT TRUTH QUERY
chr1 996555 T C GT:BD:BC 1|1:FN:0.000 .:.:.
chr1 996559 G A GT:BD:BC .:.:. 1|1:FP:0.000
chr1 996596 A AGGACCCCCCGCTGGAGGGG GT:BD:BC .:.:. 1|1:FP:0.000
chr1 996674 G T GT:BD:BC 1|1:TP:1.000 1|1:TP:1.000
chr1 996691 G A GT:BD:BC 1|1:FN:0.000 .:.:.
chr1 996707 T G GT:BD:BC .:.:. 1|1:FP:0.000
chr1 996722 G A GT:BD:BC 1|1:TP:1.000 1|1:TP:1.000
chr1 996728 A AG GT:BD:BC .:.:. 1|1:FP:0.000
chr1 996731 A C GT:BD:BC 1|1:TP:1.000 1|1:TP:1.000

SV
CONTIG POS REF ALT FORMAT TRUTH QUERY
chr1 996282 G GGGGGCACCCCACATCTGGGGCCACAGGATGCAG

GGTGGGGAGGGCAGAAAGGCCCCCCCGCGGGAA
GT:BD:BC 1|1:TP:0.867 .:.:.

chr1 996348 A AGGGGCACCCCACATCTGGGGCCACAGGATGCAG
GGTGGGGAGGGCAGAAAGGCCCCCCCGCGGGAAG
GGGCACCCCACATCTGGGGCCACAGGATGCAGGG
TGGGGAGGGCAGAAAGGACCCCCCGCTGGAGGGG
GCACCTCACGTCTGGGGCCACAGGATGCAGGGTG
GGGAGGACAGAAAGGACCCCCCGCTGGAG

GT:BD:BC .:.:. 1|1:TP:0.867

chr1 996728 A AGGACCCCCCGCTGGAGGGGGGACCCCCCGCTGG
AGGGGGCACCCCACATCTGGGGCCACAGGATGCA
GGGTGGGGAGGGCAGAAAGGACCCCCCGCTGGAG
GGGGCACCTCACGTCTGGGGCCACAGGAGGCAGG
GTGGGGAGGACAGAAAG

GT:BD:BC 1|1:TP:0.867 .:.:.

ALL
CONTIG POS REF ALT FORMAT TRUTH QUERY
chr1 996282 G GGGGGCACCCCACATCTGGGGCCACAGGATGCAG

GGTGGGGAGGGCAGAAAGGCCCCCCCGCGGGAA
GT:BD:BC 1|1:TP:1.000 .:.:.

chr1 996348 A AGGGGCACCCCACATCTGGGGCCACAGGATGCAG
GGTGGGGAGGGCAGAAAGGCCCCCCCGCGGGAAG
GGGCACCCCACATCTGGGGCCACAGGATGCAGGG
TGGGGAGGGCAGAAAGGACCCCCCGCTGGAGGGG
GCACCTCACGTCTGGGGCCACAGGATGCAGGGTG
GGGAGGACAGAAAGGACCCCCCGCTGGAG

GT:BD:BC .:.:. 1|1:TP:1.000

chr1 996350 A G GT:BD:BC 1|1:TP:1.000 1|1:TP:1.000
chr1 996423 C T GT:BD:BC 1|1:TP:1.000 .:.:.
chr1 996555 T C GT:BD:BC 1|1:TP:1.000 .:.:.
chr1 996559 G A GT:BD:BC .:.:. 1|1:TP:1.000
chr1 996596 A AGGACCCCCCGCTGGAGGGG GT:BD:BC .:.:. 1|1:TP:1.000
chr1 996674 G T GT:BD:BC 1|1:TP:1.000 1|1:TP:1.000
chr1 996691 G A GT:BD:BC 1|1:TP:1.000 .:.:.
chr1 996707 T G GT:BD:BC .:.:. 1|1:TP:1.000
chr1 996722 G A GT:BD:BC 1|1:TP:1.000 1|1:TP:1.000
chr1 996728 A AG GT:BD:BC .:.:. 1|1:TP:1.000
chr1 996728 A AGGACCCCCCGCTGGAGGGGGGACCCCCCGCTGG

AGGGGGCACCCCACATCTGGGGCCACAGGATGCA
GGGTGGGGAGGGCAGAAAGGACCCCCCGCTGGAG
GGGGCACCTCACGTCTGGGGCCACAGGAGGCAGG
GTGGGGAGGACAGAAAG

GT:BD:BC 1|1:TP:1.000 .:.:.

chr1 996731 A C GT:BD:BC 1|1:TP:1.000 1|1:TP:1.000

Figure 12: An example (from the Q100-PAV dataset) where joint evaluation of small and structural variants changes the
benchmarking results from 4 true positives (TP), 4 false positives (FP), and 2 false negatives (FN) to 9 true positives. Each
variant call file (VCF) entry reports the variant contig (CONTIG), position (POS), reference allele (REF), alternate allele (ALT),
and truth and query information: genotypes (GT), benchmarking decision (BD), and benchmarking credit (BC).
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Variant Caller minimap2, dipcall minimap2, dipcall PAV minimap2, paftools

Figure 13: The origins of each phased whole genome sequencing dataset used in this manuscript.
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gap extension penalties m, x, o, and e. All parameters have been normalized so that m = 0, and the penalties for starting
(o+e) and extending (e) a gap are plotted relative to substitutions (x). This plot includes the variant representations used in
all four datasets, along with short-read [45], long-read [46, 47], assembly [41], edit distance [48], copy number variant [49], and
structural variant [50] aligners for comparison. Each aligner is plotted in a unique color, except for when multiple aligners use
identical parameters. For dual affine gap aligners [41, 46, 47], two points are plotted with an arrow indicating the transition
to a lower extension penalty e2. NGMLR [50] uses a logarithmic gap penalty, and so there is a continuous lowering of e.
verkko is plotted at (0, 0) because it uses tandem repeat compression [13]. nPoRe [49] uses different gap penalties for simple
tandem repeats (STRs) based on their measured likelihoods, resulting in many plotted points.
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