vcfdist: accurately benchmarking phased variant calls

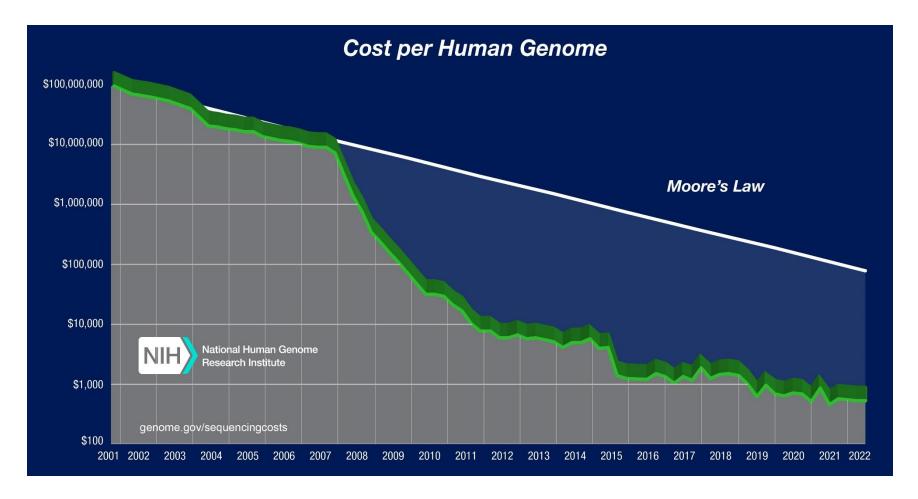
Tim Dunn

PhD Candidate

University of Michigan

Outline

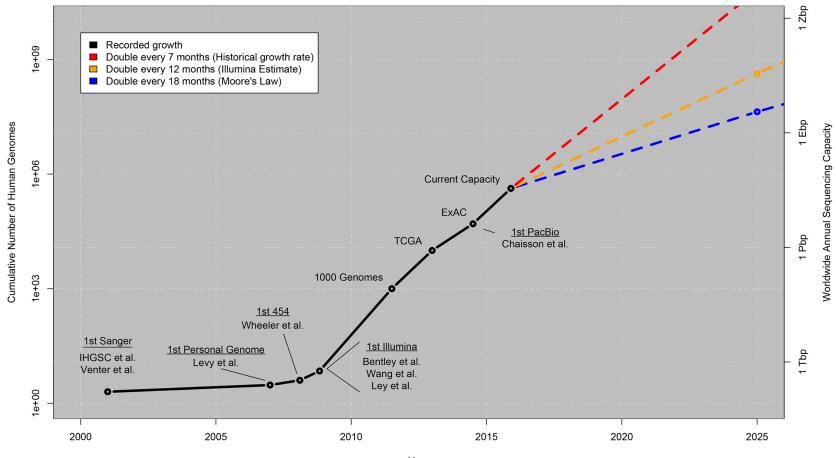
- 1. Background
- 2. Problem #1
- 3. Solution
- 4. Results
- 5. Problem #2
- 6. Solution
- 7. Results



Outline

- 1. Background: whole genome sequencing evaluation
- 2. Problem #1
- 3. Solution
- 4. Results
- 5. Problem #2
- 6. Solution
- 7. Results

Sequencing: cost is rapidly declining


NHGRI. "DNA Sequencing Costs: Data". https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data, 2023.

1/19/2024 Tim Dunn

Sequencing: exponential growth in genomes

Growth of DNA Sequencing

Year

Stephens et al. "Big Data: Astronomical or Genomical?".PLOS Biology, 2015.

Applications

- Genome wide association studies
- Pharmacogenomics
- Clinical diagnostics
- Benchmarking new methods and tech

Applications: genome comparison required

- Genome wide association studies
- Pharmacogenomics
- Clinical diagnostics
- Benchmarking new methods and tech

Comparison: genomes are mostly identical

Reference:
ACCGTTGAAGGACGGCCATTTTTT AACTGAGCATCCATCTAAAAGCCTTTTAGCGGCGCCCCTCTATAGAT

Query #1:
ACCCTTGAAGGACGGCCA TTTTTAAACTGAGCATCCATCTAAAAGCCTTTT

Image: https://document.org/accord

Variant Call Format: difference-based

Reference:
ACCGTTGAAGGACGGCCATTTTTT AACTGAGCATCCATCTAAAAGCCTTTTAGCGGCGCCCCTCTATAGAT

Query #1:
ACCCTTGAAGGACGGCCA TTTTTAAACTGAGCATCCATCTAAAAGCCTTTT

Image: https://www.amagecommunication.communicat

POSITION	REFERENCE	ALTERNATE
4	G	С
18	AT	А
25	Т	ТА
53	TAGCGGCGCCC	Т

Applications: *benchmarking*

- Genome wide association studies
- Pharmacogenomics
- Clinical diagnostics
- Benchmarking new methods and tech

Applications: *benchmarking*

- Genome wide association studies
- Pharmacogenomics
- Clinical diagnostics
- Benchmarking new methods and tech

Belton et al, "Hi-C: a comprehensive technique to capture the conformation of genomes". Nature Methods, 2012. DelveInsight Business Research. "Global DNA Sequencing Market Set to Reach USD 28.85 billion by 2027". Web, 2022.

Benchmarking: *a simple example*

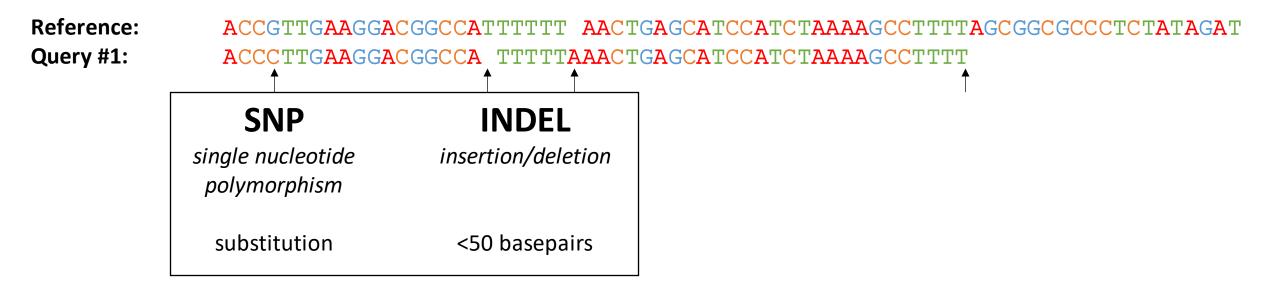
Technology #1				Technology #2			
Referen	ce:	ACCGTI	GAAG	Reference	ce:	ACCGTI	'GAAG
Query #2	1:	ACAGTA	GAAG	Query #2	2:	ACCGTA	GAGG
CHROM chr14 chr14	POS 3 6	REF C T	ALT A A	CHROM chr14 chr14	POS 6 9	REF T A	ALT A G

Benchmarking: *a simple example*

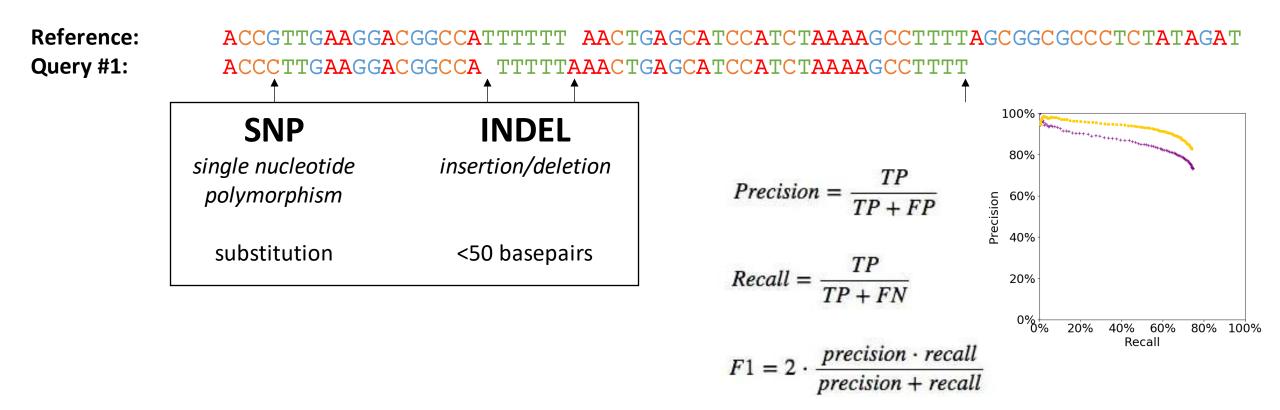

Technology #1			Technology #2			Ground Truth					
Referen	ce:	ACCG	[TGAAG	Reference	ce:	ACCG	[TGAAG	Reference	ce:	ACCG	[TGAAG
Query #2	1:	ACAG	TAGAAG	Query #2	2:	ACCG	TAGAGG	Query:		ACCG	FAGAGG
CHROM	POS	REF	ALT	CHROM	POS	REF	ALT	CHROM	POS	REF	ALT
chr14	3	С	А	chr14	6	Т	А	chr14	6	Т	А
chr14	6	Т	А	chr14	9	А	G	chr14	9	А	G

Benchmarking: *a simple example*

Technology #1			٦	Technology #2			Ground Truth				
Referenc Query #1			TGAAG AGAAG	Referenc Query #2			FTGAAG FAGAGG	Referenc Query:	ce:		ITGAAG IAGAGG
CHROM	POS	REF	ALT	CHROM	POS	REF	ALT	CHROM	POS	REF	ALT
🗙 chr14	3	С	Α	🗸 chr14	6	Т	Α	chr14	6	Т	A
🗸 chr14	6	Т	Α	🗸 chr14	9	Α	G	chr14	9	А	G



Benchmarking: stratification by variant type

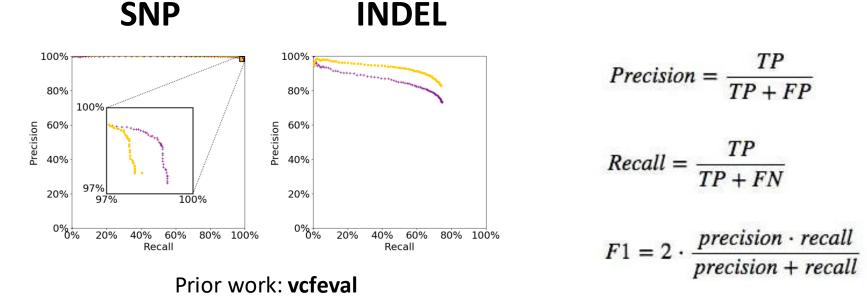


Benchmarking: small variants only

Tim Dunn, Satish Narayanasamy. "vcfdist: accurately benchmarking phased small variant calls in human genomes". Nature Communications, 2023.

Benchmarking: precision-recall curves

Tim Dunn, Satish Narayanasamy. "vcfdist: accurately benchmarking phased small variant calls in human genomes". Nature Communications, 2023.


Outline

- 1. Background: whole genome sequencing evaluation
- 2. Problem #1: complex variants
- 3. Solution
- 4. Results
- 5. Problem #2
- 6. Solution
- 7. Results

Problem: variant representation matters

Reference: Query #1: Query #2:

ACCGTTGAAGGACGGCCATTTTTT AACTGAGCATCCATCTAAAAGCCTTTTAGCGGCGCCCCTCTATAGA ACCCTTGAAGGACGGCCA TTTTTAAACTGAGCATCCATCTAAAAGCCTTTT ACCCTTGAAGGACGGCCATTTTTA AACTGAGCATCCATCTAAAAGCCTTTT

Cleary. et al. "Comparing variant call files for performance benchmarking of next-generation sequencing variant calling pipelines." BioRxiv, 2015.

Representation #1					
Reference	ce:	AAGG	AAATC		
Truth:		ATCG	AAAATC		
CHROM	POS	REF	ALT		
chr14	2	А	Т		
chr14	3	G	С		
chr14	4	G	GA		

Representation #2							
Reference:		AAGG	AAATC				
Truth:		A TO	CGAAAATC				
CHROM	POS	REF	ALT				
chr14	1	AAGG	А				
chr14	1	А	ATCGA				

Representation #1							
Reference	ce:	AAGG A	AATC				
Truth:		ATCGAAAAT C					
CHROM	POS	REF	ALT				
chr14	2	А	Т				
chr14	3	G	С				
chr14	4	G	GA				

Representation #2							
Reference:		AAGG	AAATC				
Truth:		A TCGAAAAT					
CHROM	POS	REF	ALT				
chr14	1	AAGG	А				
chr14	1	А	ATCGA				

	Techno	ology #	1	
Reference	ce:	AAGGA	AAATC	R
Query #1	L:	ATCGA	AAATC	Q
CHROM	POS	REF	ALT	C
chr14	2	А	Т	cł
chr14	3	G	С	

Techn	ology #	2
e:	AAGGA	AATC
uery #2:		AATC
POS	REF	ALT
1	AAGG	А
	e: ::	POS REF

Representation #1							
Reference	ce:	AAGG AAATC					
Truth: ATCGA		ATCGAA	AAATC				
CHROM	POS	REF	ALT				
chr14	2	А	Т				
chr14	3	G	С				
chr14	4	G	GA				

Representation #2							
Reference:		AAGG	AAATC				
Truth:		A TCGAAAAT					
CHROM	POS	REF	ALT				
chr14	1	AAGG	А				
chr14	1	А	ATCGA				

Techno	logy #1		Technology #2							
Reference:	AAGGAAAI	Referen	ce:	AAGGAAATC						
Query #1:	ATCGAAAI	Query #	2:	A AA	ATC					
CHROM POS	REF A	r CHROM	POS	REF	ALT					
🗸 chr14 2	A T	🗙 chr14	1	AAGG	А					
🗸 chr14 3	G C									
SNP Precision:	100%	SNP Pre	cision:	NA						
SNP Recall:	100%	SNP Rec	all:	0%						
INDEL Precision:	NA	INDEL P	recision:	0%						
INDEL Recall:	0%	INDEL R	ecall:	0%						

Representation #1												
e:	AAGG AAATC											
	ATCGAAAAT C											
POS	REF	ALT										
2	А	Т										
3	G	С										
4	G	GA										
	POS 2 3	AAGG A ATCGAA POS REF 2 A 3 G										

	Represe	ntation #.	2					
Referenc	e:	AAGG	AAATC					
Truth:		A TCGAAAAT(
CHROM	POS	REF	ALT					
chr14	1	AAGG	А					
chr14	1	А	ATCGA					

- Referenc Query #1		logy # AAGGA ATCGA	AATC	-	Referenc Query #2		AAGG	AAA	ATC ATC	Referend Truth:		sentation #1 AAGG AAATC ATCGAAAATC		
CHROM chr14 chr14	POS 2 3	REF A G	ALT T C	(CHROM chr14	POS 1	REF AAGG		ALT A	CHROM chr14 chr14 chr14 chr14	POS 2 3 4	REF A G G	ALT T C GA	
SNP Prec SNP Reca INDEL Pro INDEL Re	ll: ecision:	100% 100% NA 0%		S	SNP Prec SNP Reca NDEL Pr NDEL Re	all: ecision:	NA 0% 0% 0%			Reference Truth:	•	sentation # AAGG A T	\$2 AAAT CGAAAAT	
SNP Prec SNP Reca INDEL Pro INDEL Re	ll: ecision:	0% NA NA 0%		S	SNP Prec SNP Reca NDEL Pr NDEL Re	all: ecision:	NA NA 100% 50%			CHROM chr14 chr14	POS 1 1	REF AAGG A	ALT A ATCGA	

TC

TC

Outline

- 1. Background: whole-genome sequencing evaluation
- 2. Problem #1: complex variants
- 3. Solution: variant normalization
- 4. Results
- 5. Problem #2
- 6. Solution
- 7. Results

Reference AAGGAAATC

Query ATCGAAAATC

Heng Li. "Toward better understanding of artifacts in variant calling from high-coverage samples." Bioinformatics, 2014. Tan et al. "Unified representation of genetic variants." Bioinformatics, 2015.

Query ATCGAAAATC

ReferenceAAGGAAATCAlignmentAAGGAAA-TCATCGAAAATCATCGAAAATCVCFPOSREFALT2AG6AATCAAATC

Original

Heng Li. "Toward better understanding of artifacts in variant calling from high-coverage samples." Bioinformatics, 2014. Tan et al. "Unified representation of genetic variants." Bioinformatics, 2015.

Reference AAGGAAATC

Query ATCGAAAATC

Alignment AAGGAAA-TC AAGGAAA-TC ATCGAAAATC ATCGAAAATC VCF POS REF POS REF ALT ALT $\mathbf{2}$ TC $\mathbf{2}$ Α AG Т 6 3 AATC AAATC G С 6 AATC AAATC Original Decomposed

Heng Li. "Toward better understanding of artifacts in variant calling from high-coverage samples." Bioinformatics, 2014.

Tan et al. "Unified representation of genetic variants." Bioinformatics, 2015.

Refe	rence	AAGGAAA	Query ATCGAAAATC						
AAGG	nment AAA-TC AAAATC		• •	AAA-TC AAAATC		• •	AAA-TC		
VCF	•								
POS	REF	ALT	POS	REF	ALT	POS	REF	ALT	
2	AG	TC	2	Α	Т	2	Α	Т	
6	AATC	AAATC	3	G	С	3	G	С	
			6	AATC	AAATC	7	Α	AA	
Orig	inal		Deco	mposed	1	Trimmed			

Heng Li. "Toward better understanding of artifacts in variant calling from high-coverage samples." Bioinformatics, 2014.

Tan et al. "Unified representation of genetic variants." Bioinformatics, 2015.

Refe	rence	AAGGAAA	TC	C Quer			ry ATCGAAAATC						
Alig	nment												
AAGG	AAA-TC		AAGG	AAA-TC		AAGG	AAA-TC	;	AAGG	AAGG-AAATC			
ATCG	AAAATC		ATCGAAAATC			ATCG	ATCGAAAATC			ATCGAAAATC			
VCF	n in the second s												
POS	REF	ALT	POS	REF	ALT	POS	REF	ALT	POS	REF	ALT		
2	AG	TC	2	Α	Т	2	Α	Т	2	Α	Т		
6	AATC	AAATC	3	G	С	3	G	С	3	G	С		
			6	AATC	AAATC	7	Α	AA	4	G	GA		
Origi	inal		Deco	Decomposed		Trimmed			Left shifted				

Heng Li. "Toward better understanding of artifacts in variant calling from high-coverage samples." Bioinformatics, 2014.

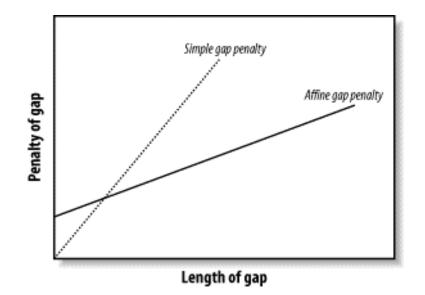
Tan et al. "Unified representation of genetic variants." Bioinformatics, 2015.

Refe	rence	AAGGAAA	TC		\mathbf{Que}	ry Ato	CGAAAA	TC							
Alig	nment														
AAGG	AAA-TC		AAGG	AAGGAAA-TC			AAGGAAA-TC			AAGG-AAATC			AAGGAAATC		
ATCG	AAAATC		ATCG	AAAATC		ATCG	AAAATC		ATCG	AAAATC		A7	TCGAAAA		
VCF	`														
POS	REF	ALT	POS	REF	ALT	POS	REF	ALT	POS	REF	ALT	POS	REF	ALT	
2	AG	TC	2	Α	Т	2	Α	Т	2	Α	Т	1	AAGG	Α	
6	AATC	AAATC	3	G	С	3	G	С	3	G	С	1	Α	ATCGA	
			6	AATC	AAATC	7	Α	AA	4	G	GA				
Origi	inal		Decomposed		Trimmed			Left shifted			Alternate				

Heng Li. "Toward better understanding of artifacts in variant calling from high-coverage samples." Bioinformatics, 2014.

Tan et al. "Unified representation of genetic variants." Bioinformatics, 2015.

Refer	rence	AAGGAAA	TC		Quei	ry Are	GAAAA	TC						
Alignment														
AAGGA	AA-TC		AAGG	AAA-TC		AAGGAAA-TC			AAGG-AAATC			AAGGAAATC		
ATCGA	AAATC		ATCGAAAATC		ATCGAAAATC			ATCGAAAATC		ATCGAAAATC				
VCF														
POS	REF	ALT	POS	REF	ALT	POS	REF	ALT	POS	REF	ALT	POS	REF	ALT
2	AG	TC	2	Α	Т	2	Α	Т	2	Α	Т	1	AAGG	А
6	AATC	AAATC	3	G	С	3	G	С	3	G	С	1	А	ATCGA
			6	AATC	AAATC	7	Α	AA	4	G	GA			
Origi	nal		Decomposed		Trimmed			Left shifted			Alternate			


Heng Li. "Toward better understanding of artifacts in variant calling from high-coverage samples." Bioinformatics, 2014.

Tan et al. "Unified representation of genetic variants." Bioinformatics, 2015.

Defenence AACCAAATC

Choosing representations: *best-alignment normalization*

- *m* = match
- x = mis-match
- *o* = gap opening
- *e* = gap extension

Bayat et al. "Improved VCF normalization for accurate VCF comparison". Oxford Bioinformatics, 2017.

Choosing representations: *best-alignment normalization*

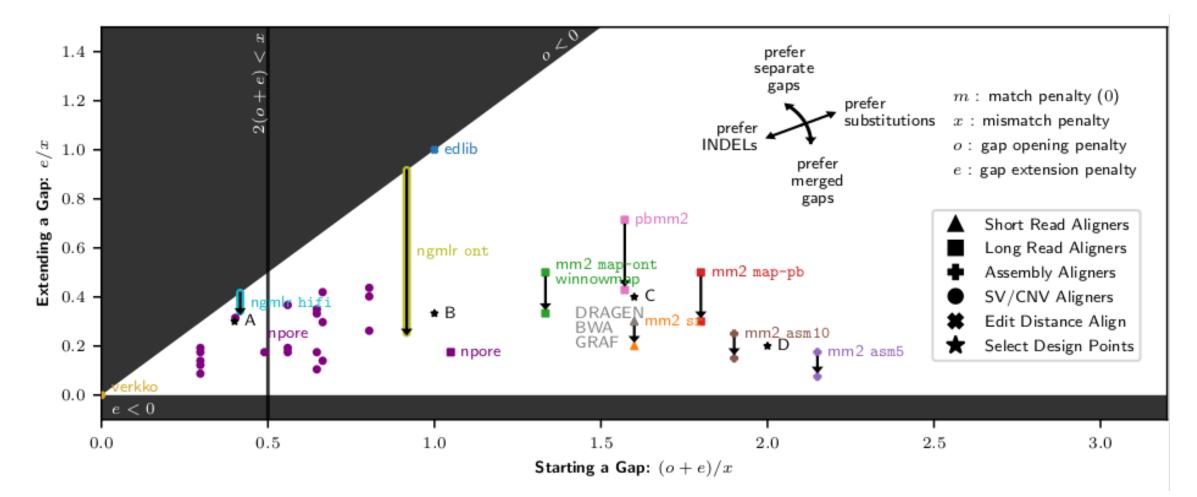
		Optio	on #1		Optic	on #2			
т	<i>m</i> = match		-AAATO	2	AAGGAAATC				
X	= mis-match	ATCG	AAAATO	C	A	TCGAAAA	TC		
0	= gap opening	POS 2	REF A	ALT T	POS 1	REF AAGG	ALT A		
е	= gap extension	3 4	G G	C GA	1	A	ATCGA		
		x + .	x + (o	+e)	(0+3	e) + (o-	+4e)		

Bayat et al. "Improved VCF normalization for accurate VCF comparison". Oxford Bioinformatics, 2017.

Choosing representations: *best-alignment normalization*

<i>m</i> = 0	= match
<i>x</i> = 5	= mis-match
<i>o</i> = 6	= gap opening
<i>e</i> = 2	= gap extension

Option #1									
• •	-AAATC								
POS	REF	ALT							
2	A	Т							
3	G	C							
4	G	GA							
x + 2	x + (o	+e)							
	18								


Option #2

AAGG----AAATC A---TCGAAAATC

POS	REF	ALT
1	AAGG	A
1	A	ATCGA

(o+3e) + (o+4e) 26

Alignment-based normalization design space

Tim Dunn, Satish Narayanasamy. "vcfdist: accurately benchmarking phased small variant calls in human genomes". Nature Communications, 2023.

Outline

- 1. Background: whole-genome sequencing evaluation
- 2. Problem #1: complex variants
- 3. Solution: variant normalization
- 4. Results: stable evaluations
- 5. Problem #2
- 6. Solution
- 7. Results

Example: tandem repeat benchmark representation

Dataset	SNPs	INDELS		
Original Representation	917,255	431,545		
Normalized At Point C	502,076	461,258		

English et al. "Benchmarking of small and large variants across tandem repeats". bioRxiv, 2023.

Example: tandem repeat benchmark representation

Original VCF: GIAB Tandem Repeats

chr20 278985 A C

chr20 278986 C G

chr20 278990 G C

chr20 278993 C A

G GGGAGGGAGGGGGGGGACGGAGGGA chr20 278994 GGGAGGGAGGGACGGAGGGCGGGACGGCGGGAGGGCGGGAC AGGGCGGGACGGAGGGAGGGAGGGAGGGACGGAGGGCGGGA GGAGGGCGGGAGGGCGGGACGGAGGGAGGGAGGGCGGGACG GGGAGGGAGGGACGGAGGGCGGGACGGCGGGAGGGCGGGAC AGGGAGGGAGGGAGGGAGGGAGGGAGGGAGGGAGGGAGGGA AGGGCGGGACGGAGGGAGGGAGGGC

chr20	278998	С	G	
chr20	279001	С	А	
chr20	279022	С	G	
chr20	279029	Α	С	
chr20	279033	С	А	
chr20	279038	С	Т	
chr20	279045	С	А	

A C

12 SNPs 1 INS (622bp)

Normalized VCF: vcfdist design point C

2 INS (438bp, 184bp)

chr20 279069

Other Contributions

- Efficient variant clustering
- Allow inexact variant matches
- Use phasing information for evaluation
- Distance based evaluation metrics

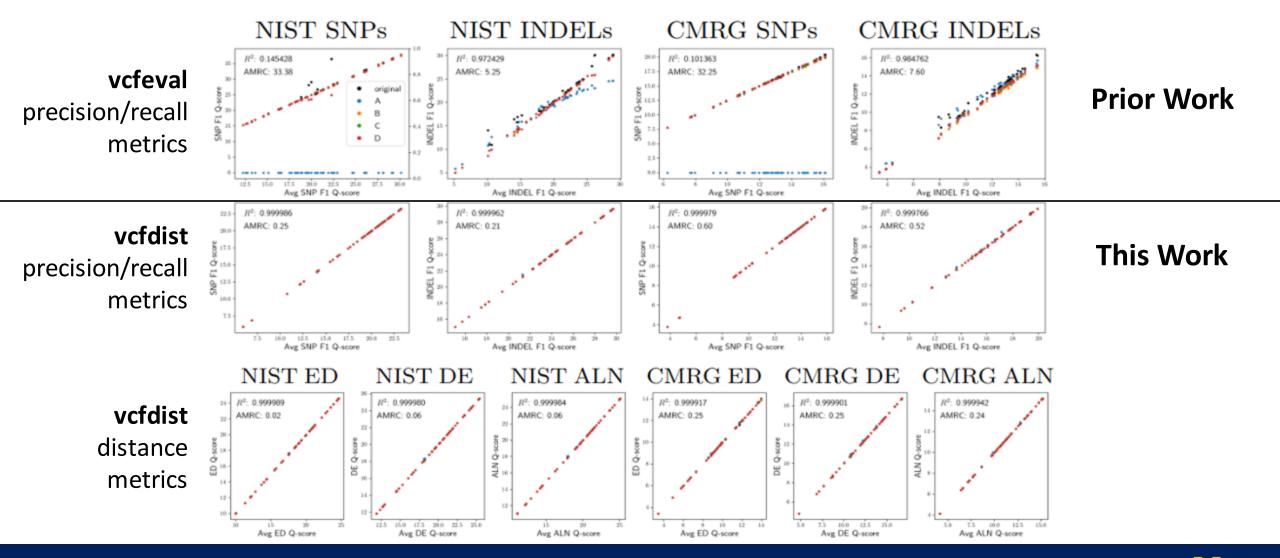
Tim Dunn, Satish Narayanasamy. "vcfdist: accurately benchmarking phased small variant calls in human genomes". Nature Communications, 2023.

Example: *inexact complex variant matches*

Query:

CHROM	POS	REF	ALT	CALL	CREDIT
chr1	976722	С	CAGGAACCGCCTCCCACTCCCCCACAACCCCGG	GAACCGC	CTCCCACTC
CCCCCG	CAACCCCC	GGGAACC	GCCTCCCACTCCCCCGCAACCCC	INS TP	0.979
chr1	976745	G	A	SNP TP	0.979

Truth:

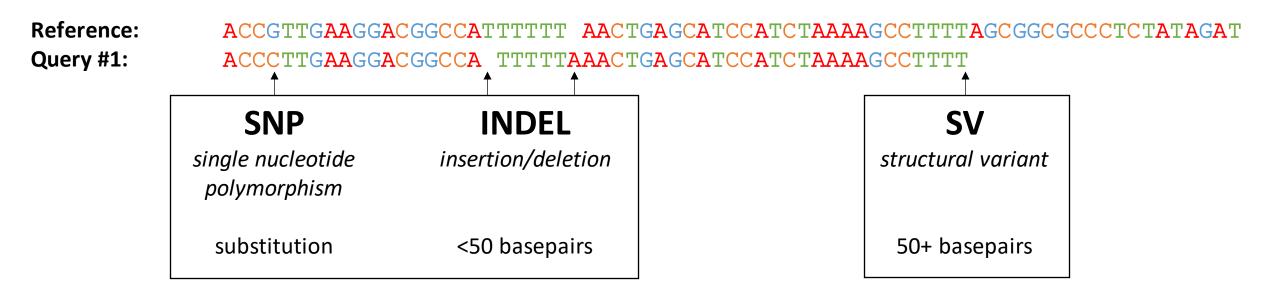

CHROM	POS	REF	ALT	CALL	CREDIT
chr1	976715	А	ACAACCCCAGGAACCGCCTCCCACTCCCCCA	INS TP	0.979
chr1	976747	С	CAACCCCGGGAACCGCCTCCCACTCCCCCG	INS TP	0.979
chr1	976777	G	A	SNP TP	0.979
chr1	976811	С	CAACCCCGGGAACCGCCTCCCACTCCCCCG	INS TP	0.979
chr1	976840	С	G	SNP TP	0.979
chr1	976841	G	A	SNP TP	0.979

Dataset: *PrecisionFDA Truth Challenge V2*

- 64 whole genome sequencing submissions
- Illumina, PacBio, ONT, and Multi-tech

Olson et al. "PrecisionFDA Truth Challenge V2: Calling variants from short and long reads in difficult-to-map regions." Cell, 2022.

Results: *stable performance across representations*

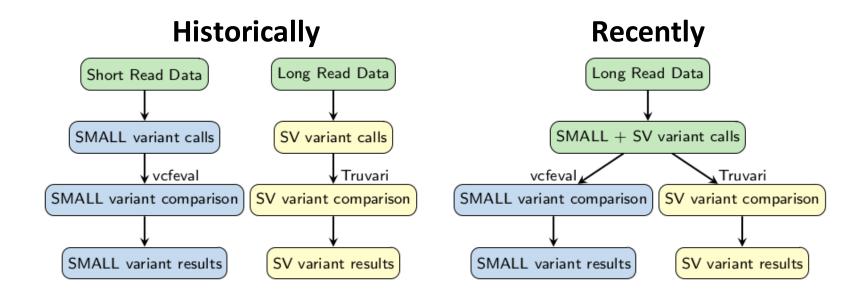


Outline

- 1. Background: whole-genome sequencing evaluation
- 2. Problem #1: complex variants
- 3. Solution: variant normalization
- 4. Results: stable evaluations
- 5. Problem #2: separate evaluation of small and structural variants
- 6. Solution
- 7. Results

Problem: separate evaluations for small and SVs

Example: variant matches across size categories

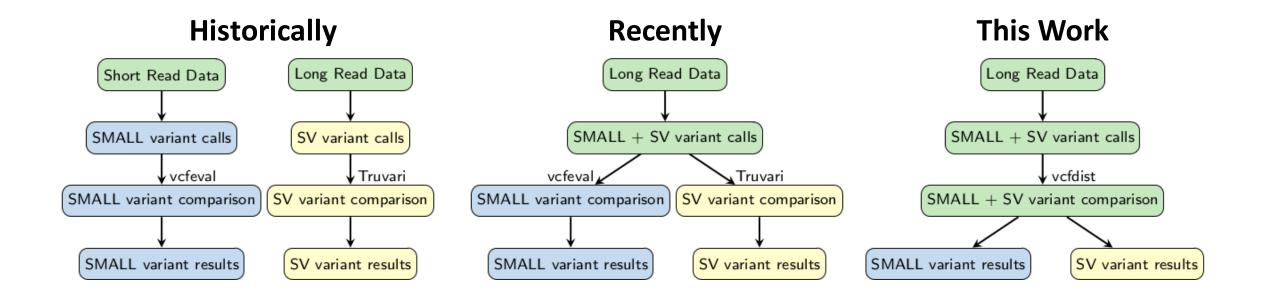

Query:

CHROM	POS	REF	ALT	CALL	CREDIT
chr1	976722	С	CAGGAACCGCCTCCCACTCCCCCACAACCCCGG	GAACCGC	СТСССАСТС
CCCCCG	CAACCCCC	GGGAACC	GCCTCCCACTCCCCCGCAACCCC	INS TP	0.979
chr1	976745	G	A	SNP TP	0.979

Truth:

CHROM	POS	REF	ALT	CALL	CREDIT
chr1	976715	А	ACAACCCCAGGAACCGCCTCCCACTCCCCCA	INS TP	0.979
chr1	976747	С	CAACCCCGGGAACCGCCTCCCACTCCCCCG	INS TP	0.979
chr1	976777	G	A	SNP TP	0.979
chr1	976811	С	CAACCCCGGGAACCGCCTCCCACTCCCCCG	INS TP	0.979
chr1	976840	С	G	SNP TP	0.979
chr1	976841	G	A	SNP TP	0.979

Why: short-read mapping, inaccurate long reads

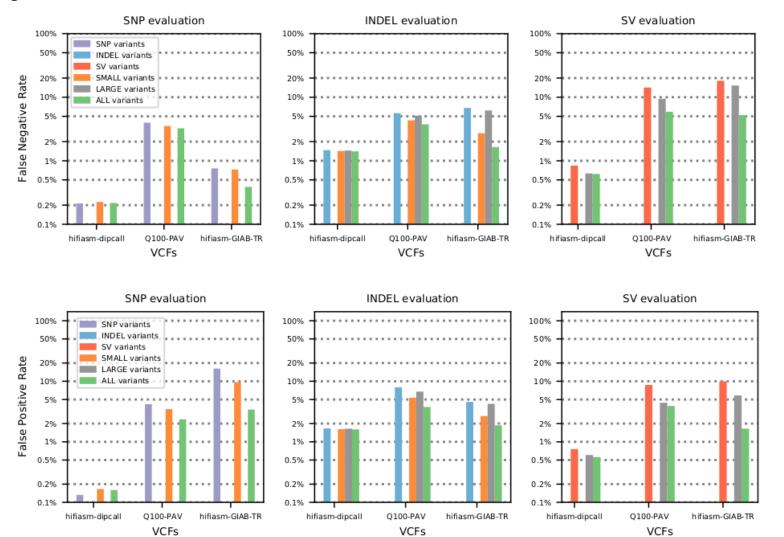


Outline

- 1. Background: whole-genome sequencing evaluation
- 2. Problem #1: complex variants
- 3. Solution: variant normalization
- 4. Results: stable evaluations
- 5. Problem #2: separate evaluation of small and structural variants
- 6. Solution: joint evaluation of small and structural variants
- 7. Results

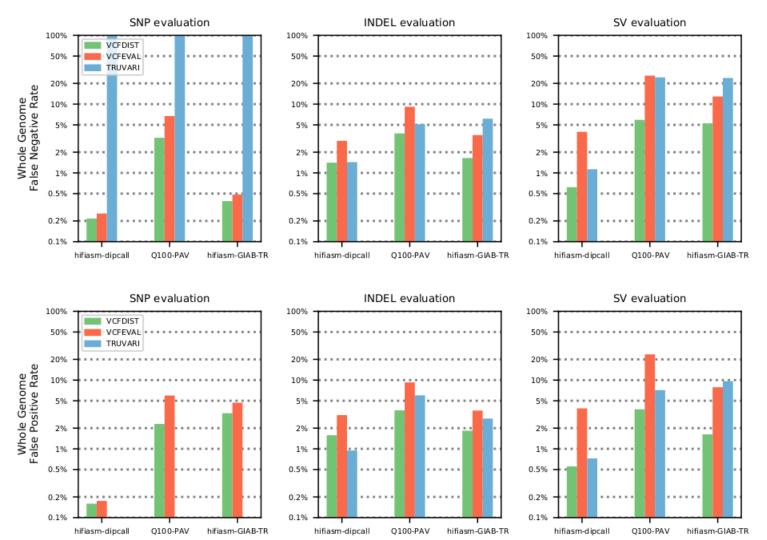
Solution: joint small and SV evaluation

Dunn et al. "Jointly benchmarking small and structural variant calls with vcfdist". bioRxiv, 2024.



Outline

- 1. Background: whole-genome sequencing evaluation
- 2. Problem #1: complex variants
- 3. Solution: variant normalization
- 4. Results: stable evaluations
- 5. Problem #2: separate evaluation of small and structural variants
- 6. Solution: joint evaluation of small and structural variants
- 7. Results: accurate evaluations



Results: *joint small and SV evaluation*

1/19/2024 Tim Dunn

Results: comparison to prior work

University of Michigan 12 52

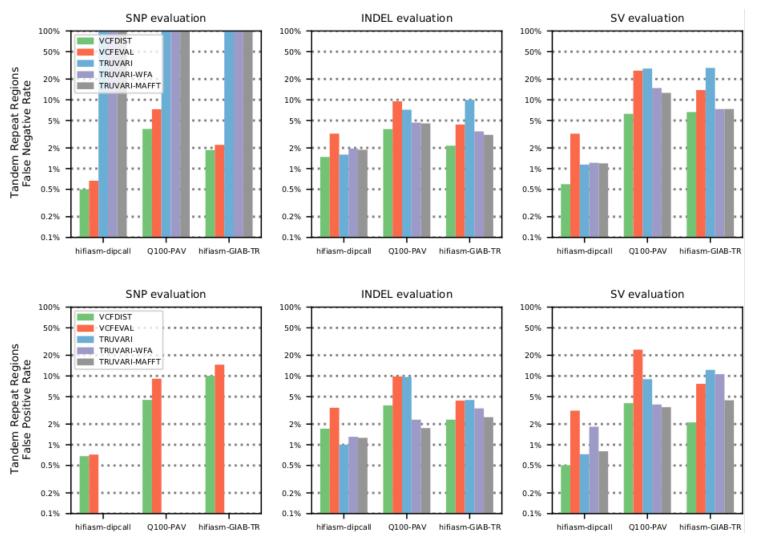
Results: *better phasing evaluations*

Dataset	Tool	$\mathbf{Switches}$	\mathbf{Flips}
hifiasm-dipcall	${f WhatsHap}\ {f vcfdist}$	$\begin{array}{c} 610 \\ 494 \end{array}$	$\frac{396}{390}$
Q100-PAV	${f WhatsHap}\ {f vcfdist}$	$\begin{array}{c} 324 \\ 6 \end{array}$	$\begin{array}{c} 433 \\ 52 \end{array}$
hifiasm-GIAB-TR	${f WhatsHap}\ {f vcfdist}$	$\begin{array}{c} 1074 \\ 494 \end{array}$	$\frac{1004}{396}$

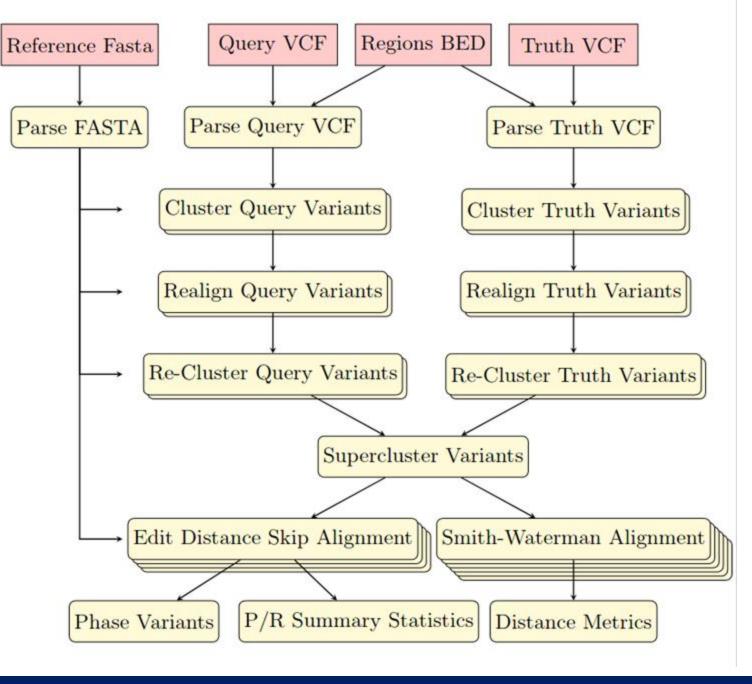
Results: *better phasing evaluations*

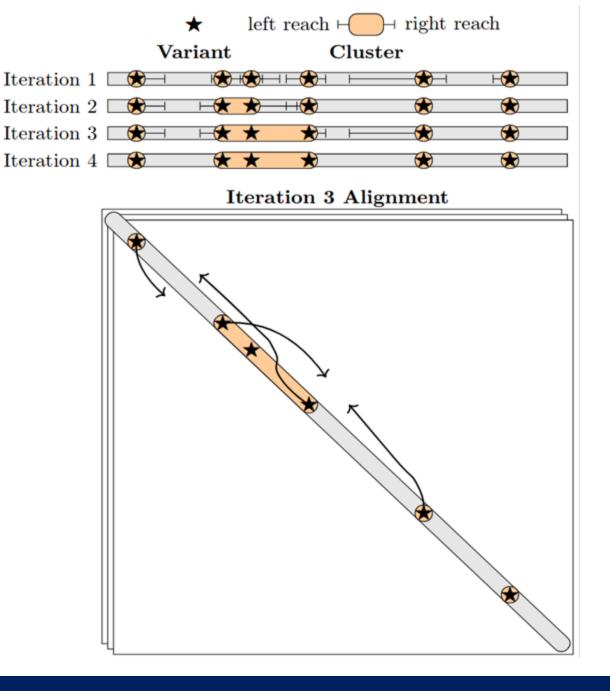
	CONTIG	POS		REF	ALT	FORMAT	TRUT	Ή		QUERY		
	chr1	32,653	3,646	Т	G	GT:BD:BC	0 1:	TP:1.	0	0 1:TP:1.0		
	chr1	32,653	3,657	TTTG	Т	GT:BD:BC	0 1:	TP:1.	0	. : . : .		
	chr1	32,653	3,658	TTG	Т	GT:BD:BC	.:.:			0 1:TP:1.0		
	chr1	32,653	3,658	TTG	Т	GT:BD:BC	1 0:	TP:1.	0	. : . : .		
	chr1	32,653	3,659	TG	Т	GT:BD:BC	. : . :			1 0:TP:1.0		
	chr1	32,653	3,665	TG	Т	GT:BD:BC	. : . :			1 1:TP:1.0		
	chr1	32,653	3,666	G	Т	GT:BD:BC	1 1:	TP:1.	0	. : . : .		
	Po	osition	37		46	47	58	59	60	61	66	67
	Refe	erence	GTTTT	TTTT	Т	TTTTTTTTTTT	Т	Т	G	TTTTTT	G	TTTT
Haplotyp	o 1	Truth	GTTTT	TTTT	Т	TTTTTTTTTTTT	Т			TTTTTT	Т	TTTT
парютур	eı	Query	GTTTT	TTTT	Т	TTTTTTTTTTTT	Т	Т		TTTTTT		TTTT
	•	Truth	GTTTT	TTTT	G	TTTTTTTTTTTT				TTTTTT	Т	TTTT
Haplotyp	e 2	Query	GTTTT	TTTT	G	TTTTTTTTTTTT	Т			TTTTTT		TTTT

Conclusion

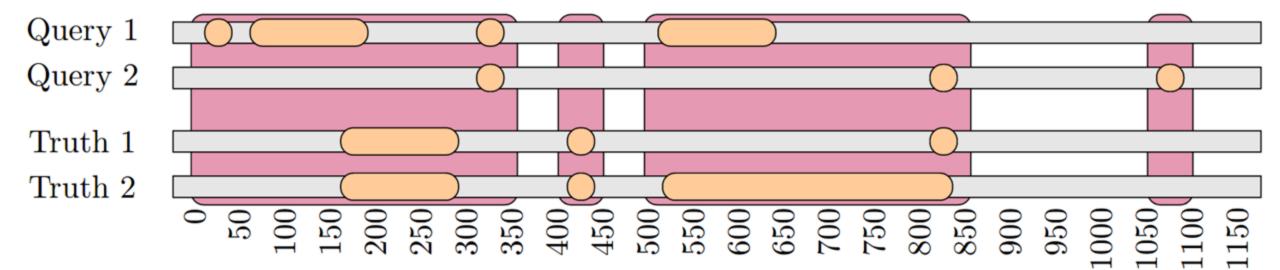

This project was supported by the National Science Foundation Graduate Research Fellowship under Grant 1841052. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation

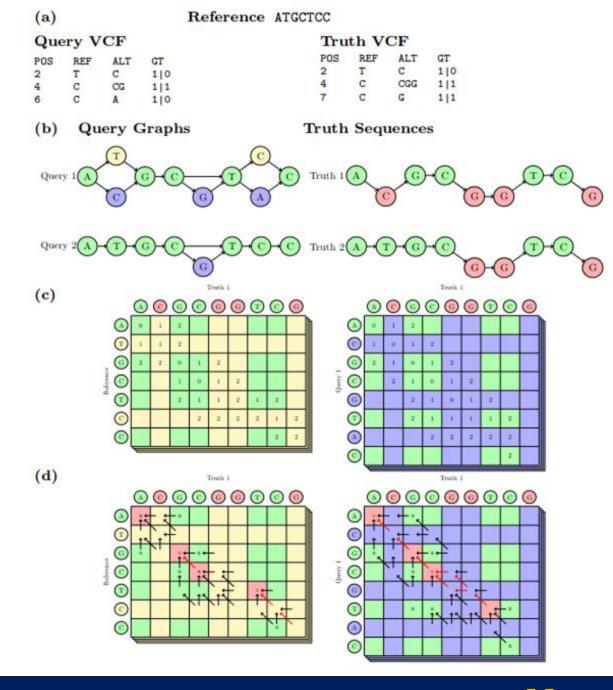
Supplementary Slides


Results: comparison to prior work


Supplementary Slides: Implementation

Overview




Superclustering: *simple reference distance heuristic*

Precision/Recall:

edit distance, allows skipping FP query variants, backtracking

