vcfdist

Accurately benchmarking phased small variant calls in human genomes

Tim Dunn University of Michigan

Reference AAGGAAATC

Query ATCGAAAATC

Reference AAGGAAATC

Query ATCGAAAATC

Alignment AAGGAAA-TC

Reference AAGGAAATC

Query ATCGAAAATC

Alignment AAGGAAA-TC ATCGAAAATC VCF POS REF ALT 2 AG TC

6 AATC AAATC

Original

Reference AAGGAAATC

Query ATCGAAAATC

Alig	nment								
AAGG	AAA-TC		AAGGAAA-TC						
ATCG	AAAATC		ATCGAAAATC						
VCE	ה								
POS	REF	ALT	POS	REF	ALT				
2	AG	TC	2	Α	Т				
6	AATC	AAATC	3	G	С				
			6	AATC	AAATC				
Orig	inal		Decomposed						

Reference AAGGAAATC Query ATCGAAAATC Alignment AAGGAAA-TC AAGGAAA-TC AAGGAAA-TC ATCGAAAATC ATCGAAAATC ATCGAAAATC VCF POS POS REF ALT POS REF AT.T REF ALT 2 TC 2 AG A Т 2 A Т 6 AATC AAATC 3 G C 3 G C 6 AATC AAATC 7 AA A Original Trimmed Decomposed

Query ATCGAAAATC

Alignment AAGGAAA-TC AAGGAAA-TC AAGGAAA-TC AAGG-AAATC ATCGAAAATC ATCGAAAATC ATCGAAAATC ATCGAAAATC VCF POS REF ALT POS REF AT.T POS REF ALT POS REF ALT 2 TC AG 2 A Т 2 A Т 2 A Т 6 AATC AAATC 3 G C 3 G C 3 G C 6 AATC AAATC 7 GA A AA 4 G Original Trimmed Left shifted Decomposed

Reference AAGGAAATC

Reference AAGGAAATC

Alignment

Query ATCGAAAATC

8-														
AAGGA ATCGA	AAATC		AAGG.	AAA-TC AAAATC		AAGG.	AAA-TC	;	AAGG ATCG	-AAATC	:	AAGG A	TCGAAAA	TC
VCF														
POS	REF	ALT	POS	REF	ALT	POS	REF	ALT	POS	REF	ALT	POS	REF	ALT
2	AG	TC	2	Α	Т	2	A	Т	2	A	Т	1	AAGG	A
6	AATC	AAATC	3	G	С	3	G	C	3	G	C	1	Α	ATCGA
			6	AATC	AAATC	7	Α	AA	4	G	GA			
Origi	nal		Deco	mposed	1	Trim	med		Left	shifte	d	Alte	rnate	

Overview

1. Key Ideas

- A. Standardize complex variant representation
- B. Allow partial credit for variant calls
- C. Distance-based evaluation metrics
- D. Enforce local variant phasing

2. Results

Improved stability of variant calling evaluation

3. Extension

"Can we directly evaluate structural variants?"

Overview

1. Key Ideas

- A. Standardize complex variant representation
- B. Allow partial credit for variant calls
- C. Distance-based evaluation metrics
- D. Enforce local variant phasing

2. Results

Improved stability of variant calling evaluation

3. Extension

"Can we directly evaluate structural variants?"

"Best alignment normalization" (Bayat, 2016)

- m = match(0)
- x = mis-match
- *o* = gap opening
- e = gap extension

"Best alignment normalization" (Bayat, 2016)

m = match(0)	AAGG-AAATC		AAGGAAATC				
x = mis-match	ATCG	AAAATO	;	A	TCGAAAA	TC	
o = gap opening	POS 2	REF A	ALT T	POS 1	REF AAGG	ALT A	
e = gap extension	$3 \\ 4$	G G	C GA	1	A	ATCGA	
	x +	x + x + (o+e)			(o+3e) + (o+4e)		

"Best alignment normalization" (Bayat, 2016)

m = match(0)	AAGG-AAATC		AAGG	AAGGAAATC		
x = mis-match (5)	ATCG	AAAATO	;	A	TCGAAAA	TC
o = gap opening (6)	POS 2	REF A	ALT T	POS 1	REF AAGG	ALT A
e = gap extension (2)	$\frac{3}{4}$	G G	C GA	1	A	ATCGA
		18			26	

Refer	ence 4	GGCGA	CA		Qı	aery A	TACCGA	GCTTA				
Point	\boldsymbol{A}		Point	B	1	Point	c C	1	Point	; D		
m, x, c	e, e = 0,	10, 1, 3	m, x, q	o, e = 0,	3, 2, 1	m, x, c	o, e = 0	, 5, 6, 2	m, x, a	p, e = 0, 5	5,9,1	
Align	ment											
AGGCGA-CA		CA	A-GGCGA-CA			A-GG	CGA	CA	AGGC	GAC	A	
ATACCGAGCTTA						• •	 CCACCT	ידע אדי	· ^'		D $e = 0, 5, 9, 1$ $AC A$ $ACCGAGCTTA$ $REF ALT$ $AGGC A$ $G T$ $C CCGAGCTT$	
AIACCGAGCIIA			ATAO	COAGCI	IA	AIROOURGOIIR			A .	TACCOAG	OTTA	
VCF												
POS	REF	ALT	POS	REF	ALT	POS	REF	ALT	POS	REF	ALT	
1	AGG	Α	1	Α	AT	1	Α	AT	1	AGGC	Α	
3	G	GTAC	2	G	A	2	G	A	5	G	Т	
6	Α	AG	3	G	С	3	G	C	7	C	CCGAGCTT	
7	C	CTT	6	Α	AG	6	Α	AGCT				
			7	C	CTT	7	C	T				

Representation	\mathbf{SNPs}	INDELs
Original	3,367,320	$548,\!602$
A	0	7,185,103
B	3,366,095	547,654
C	3,369,257	545,077
D	3,369,279	$544,\!664$

Overview

1. Key Ideas

- A. Standardize complex variant representation
- B. Allow partial credit for variant calls
- C. Distance-based evaluation metrics
- D. Enforce local variant phasing

2. Results

Improved stability of variant calling evaluation

3. Extension

"Can we directly evaluate structural variants?"

Ref. ACCCTTTTTTG Query ACCTTTG

Truth ACCCTTTG

Ref	. ACCO	CTTTTTTG	Que	ery AC	CTTTG	Tru	th AC	CCTTTG
Que: Rep:	ry VCF resentat	ion 1	Que Rep	ry VCI resenta	tion 2	Trut	h VCF	
POS	REF	ALT	POS	REF	ALT	POS	REF	ALT
3	CCTTT C		1	AC	Α	4	CTTT	C
			4	CTTT	C			

Ref.	ACCO	CTTTTTTG	Que	ery AC	CTTTG	Truth ACCCTTTG				
Query Repre	y VCF esentat	ion 1	Que Rep	ry VCI resenta	tion 2	Trut	h VCF			
POS	REF	ALT	POS	REF	ALT	POS	REF	ALT		
3	CCTTT C		1	AC	Α	4	CTTT	C		
			4	CTTT	C					

vcfeval Summary Statistics										
	\mathbf{TP}	\mathbf{FP}	FN	PP	Prec.	Recall	F1	F1 Q-score		
Query Repr. 1	0	1	1	0	0.00	0.00	0.00	0.00		
Query Repr. 2	1	1	0	0	0.50	1.00	0.67	4.77		

Ref.	ACCO	CTTTTTTG	Que	ery AC	Tru	Truth ACCCTTTG				
Quer Repr	y VCF esentat	ion 1	Que Rep	ry VCI resenta	tion 2	Trut	h VCF			
POS	REF	ALT	POS	REF	ALT	POS	REF	ALT		
3	CCTTT	C	1	AC	Α	4	CTTT	С		
			4	CTTT	C					

	vcfeval Summary Statistics											
	TP	\mathbf{FP}	FN	PP	Prec.	Recall	F1	F1 Q-score				
Query Repr. 1	0	1	1	0	0.00	0.00	0.00	0.00				
Query Repr. 2	1	1	0	0	0.50	1.00	0.67	4.77				
n 		vo	fdist S	Summa	ary Stati	stics						
	TP	FP	FN	PP	Prec.	Recall	F1	F1 Q-score				
Query Repr. 1	0	0	0	1	0.67	0.67	0.67	4.77				
Query Repr. 2	1	1	0	0	0.50	1.00	0.67	4.77				

Overview

1. Key Ideas

- A. Standardize complex variant representation
- B. Allow partial credit for variant calls
- C. Distance-based evaluation metrics
- D. Enforce local variant phasing

2. Results

Improved stability of variant calling evaluation

3. Extension

"Can we directly evaluate structural variants?"

C. Distance based evaluation metrics

Ref	. ACCO	CTTTTTTG	Que	ery AC	Tru	Truth ACCCTTTG			
Que: Rep:	ry VCF resentat	ion 1	Que Rep	ry VCI resenta	tion 2	Trut	h VCF		
POS	REF	ALT	POS	REF	ALT	POS	REF	ALT	
3	3 CCTTT C		1	AC	Α	4	CTTT	C	
			4	CTTT	C				

vcfeval Summary Statistics								
	\mathbf{TP}	\mathbf{FP}	FN	PP	Prec.	Recall	F1	F1 Q-score
Query Repr. 1	0	1	1	0	0.00	0.00	0.00	0.00
Query Repr. 2	1	1	0	0	0.50	1.00	0.67	4.77

vcfdist Summary Statistics								
	TP	FP	FN	PP	Prec.	Recall	F1	F1 Q-score
Query Repr. 1	0	0	0	1	0.67	0.67	0.67	4.77
Query Repr. 2	1	1	0	0	0.50	1.00	0.67	4.77

vcfdist Distance Summary						
	ED	DE	DE Q-score	ED Q-score	ALN Q-Score	
Reference	3	1				
Query Repr. 1	1	1	4.77	0.00	3.01	
Query Repr. 2	1	1	4.77	0.00	3.01	

Overview

1. Key Ideas

- A. Standardize complex variant representation
- B. Allow partial credit for variant calls
- C. Distance-based evaluation metrics
- D. Enforce local variant phasing

2. Results

Improved stability of variant calling evaluation

3. Extension

"Can we directly evaluate structural variants?"

Truth	VCF			
CHROM	POS	REF	ALT	GT
chr1	19672401	TTCC	Т	1 1
chr1	19672413	A	AGAG	1 1

Origin	al Query V	VCF		
CHROM	POS	REF	ALT	GT
chr1	19672401	TTCC	Т	0 1
chr1	19672410	C	Α	0 1
chr1	19672411	Т	G	01
chr1	19672412	С	Α	01
chr1	19672413	A	AGAG,G	1 2

Truth	VCF			
CHROM	POS	REF	ALT	GT
chr1	19672401	TTCC	Т	1 1
chr1	19672413	Α	AGAG	1 1

Origin	al Query V	VCF		
CHROM	POS	REF	ALT	GT
chr1	19672401	TTCC	Т	0 1
chr1	19672410	C	А	01
chr1	19672411	Т	G	0 1
chr1	19672412	C	Α	01
chr1	19672413	Α	AGAG,G	1 2
Query	VCF, star	ndardiz	ed at C	
CHROM	POS	REF	ALT	GT
chr1	19672401	TTCCTC	СС Т	01
chr1	19672413	Α	AGAG	1 1

Truth	VCF			
CHROM	POS	REF	ALT	GT
chr1	19672401	TTCC	Т	1 1
chr1	19672413	Α	AGAG	1 1

Origin	al Query V	/CF		
CHROM	POS	REF	ALT	GT
chr1	19672401	TTCC	Т	0 1
chr1	19672410	C	Α	0 1
chr1	19672411	Т	G	0 1
chr1	19672412	C	Α	0 1
chr1	19672413	Α	AGAG,G	1 2
Query	VCF, star	ndardiz	ed at C	
CHROM	POS	REF	ALT	GT
chr1	19672401	TTCCTC	CC T	0 1
chr1	19672413	Α	AGAG	1 1

Truth	VCF			
CHROM	POS	REF	ALT	GT
chr1	19672401	TTCC	Т	1 1
chr1	19672413	Α	AGAG	1 1

Original Query VCF Summary 4 SNP TP, 2 INDEL TP

Query VCF at C Summary

1 INDEL TP, 1 INDEL FP, 1 INDEL FN

Overview

Phasing

$\left(\mathbf{x}\right)$? Y 2 ? X X Y ? X Y Y X ? X Y X Y Y

Phased Superclusters

Overview

1. Key Ideas

- A. Standardize complex variant representation
- B. Allow partial credit for variant calls
- C. Distance-based evaluation metrics
- D. Enforce local variant phasing

2. Results

Improved stability of variant calling evaluation

3. Extension

"Can we directly evaluate structural variants?"

Stable performance across representations

Stable performance across representations

Stable performance across representations

Bias towards fragmented variants

vcfeval

Overview

1. Key Ideas

- A. Standardize complex variant representation
- B. Allow partial credit for variant calls
- C. Distance-based evaluation metrics
- D. Enforce local variant phasing

2. Results

Improved stability of variant calling evaluation

3. Extension

"Can we directly evaluate structural variants?"

Motivation

A. Single tool to handle all genomic variation: SNPs, INDELs, SVs, TRs...

B. Alignment-based

- Variant representation has little/no impact
- Results don't depend on threshold heuristics
- C. Partial credit
 - Can treat SVs with same methods as SNPs and small INDELs
 - Most SV calls aren't exactly correct

Tools for variant calling evaluation

About				Variant	Types		Phasi	ng		Credit	Aln Inv	ariance
<u>Tool</u>	<u>Lang</u>	<u>Release</u>	<u>Stars</u>	<u>SNPs /</u> INDELs	<u>small</u> <u>SVs</u>	<u>large</u> <u>SVs</u>	none	local	<u>global</u>	<u>near</u> <u>match</u>	<u>exact</u> <u>seq</u>	<u>near</u> seq
vcfdist	C++	2023	18	\checkmark	?	×	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
rtg vcfeval	Java	2015	232	\checkmark	×	×	\checkmark	×	\checkmark	×	\checkmark	\checkmark
xcmp hap.py	C++	2019	343	\checkmark	×	×	\checkmark	×	\checkmark	×	\checkmark	\checkmark
VarMatch	C++	2016	9	\checkmark	×	×	\checkmark	×	×	×	\checkmark	\checkmark
TruVari	Python	2018	222	×	\checkmark	\checkmark	×	?	\checkmark	\checkmark	\checkmark	×
hap-eval	Python	2022	11	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×
TT-Mars	Python	2021	16	×	\checkmark	\checkmark	×	?	\checkmark	\checkmark	×	×
SVanalyzer	Perl	2017	65	×	\checkmark	\checkmark	?	?	\checkmark	\checkmark	×	×

A simple example

Query: Verkko Assembly (Zook)

Truth: GIAB TR Benchmark (English)

A more complex example

Query: 94 base insertion

CHROM	POS	REF	ALT	CALL	CREDIT
chr1	976722	С	CAGGAACCGCCTCCCACTCCCCCACAACCCCGGC	AACCGCCT	⁻ CCCACTC
CCCCCGCA	AACCCCGG	GAAC	CGCCTCCCACTCCCCCGCAACCCC	INS PP	0.979167
chr1	976745	G	A	SNP PP	0.979167

Truth: Three ~31 base insertions

CHROM	POS	REF	ALT	CALL	CREDIT
chr1	976715	А	ACAACCCCAGGAACCGCCTCCCACTCCCCCA	INS PP	0.979167
chr1	976747	С	CAACCCCGGGAACCGCCTCCCACTCCCCCCG	INS PP	0.979167
chr1	976777	G	A	SNP PP	0.979167
chr1	976811	С	CAACCCCGGGAACCGCCTCCCACTCCCCCCG	INS PP	0.979167
chr1	976840	С	G	SNP PP	0.979167
chr1	976841	G	A	SNP PP	0.979167

GIAB TR equivalent representations

Original

chr20 278985 Α С С G chr20 278986 chr20 278990 G С 278993 C chr20 А 278994 G GGGAGGGAGGGCGGGACGGAGGGA chr20 GCGGGACGGAGGGAGGGAGGGAGGGACGGAGGGCGGGACGGC GGGACGGAGGGCGGGACGGCGGGAGGGCGGGACGGAGGGACG CGGGACGGAGGGAGGGAGGGAGGGACGGAGGGCGGGACGGAG GGAGGGAGGGC

chr20	278998	С	G
chr20	279001	С	А
chr20	279022	С	G
chr20	279029	А	С
chr20	279033	С	А
chr20	279038	С	Т
chr20	279045	С	A
chr20	279069	А	С

12 SNPs 1 INS (622bp)

Normalized (C)

```
2 INS (438bp, 184bp)
```

Total true positive tandem repeat variants

whole genome	Original	Normalized	Difference
TR Bench SNP TP	980,432	610,522	-37.7%
TR Bench INDEL TP	519,114	564,916	+8.8%
Verkko SNP TP	552,776	564,982	+2.2%
Verkko INDEL TP	412,113	418,818	+1.6%

Distance-based metrics vs precision and recall

chr20:1-3,000,000	Original	Normalized
SNP Precision	97.42%	96.23%
SNP Recall	93.88%	98.38%
F1 SNP Qscore	13.58	15.68
INDEL Precision	79.09%	80.11%
INDEL Recall	98.03%	97.43%
F1 INDEL Qscore	9.05	9.18
Edit Distance	750	750
Distinct Edits	34	34
Alignment Qscore	12.83	12.83

Comparison with TruVari (<1000bp)

whole genome	TruVari v3	vcfdist	Difference
TR Bench TP	1,187,250	1,499,546	+26.3%
Verkko TP	778,520	964,889	+23.9%

Summary

- There are still challenges regarding complex variant representations
- vcfdist makes progress on these challenges, and works with SVs
- vcfdist is currently too inefficient for large SV evaluations
- Lots of room for improving vcfdist's evaluation speed
- Need for discussion on metrics and best practices

Questions?

