vcfdist: accurately benchmarking phased variant calls

Tim Dunn

PhD Candidate

University of Michigan

Outline

- 1. Context
- 2. Problem
- 3. Discussion
- 4. Solution
- 5. Implementation
- 6. Results
- 7. Next Steps

Outline

- **1. Context:** whole genome sequencing evaluation
- 2. Problem
- 3. Discussion
- 4. Solution
- 5. Implementation
- 6. Results
- 7. Next Steps

Sequencing: cost is rapidly declining

NHGRI. "DNA Sequencing Costs: Data". https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data, 2023.

Sequencing: exponential growth in genomes

Growth of DNA Sequencing

Stephens et al. "Big Data: Astronomical or Genomical?". PLOS Biology, 2015.

Applications

- Genome wide association studies
- Pharmacogenomics
- Clinical diagnostics
- Benchmarking new methods and tech

Applications: genome comparison required

- Genome wide association studies
- Pharmacogenomics
- Clinical diagnostics
- Benchmarking new methods and tech

Comparison: genomes are mostly identical

 Reference:
 ACCGTTGAAGGACGGCCATTTTTT AACTGAGCATCCATCTAAAAGCCTTTTAGCGGCGCCCCTCTATAGAT

 Query #1:
 ACCCTTGAAGGACGGCCA TTTTTAAACTGAGCATCCATCTAAAAGCCTTTT

 1
 1

Variant Call Format: difference-based

 Reference:
 ACCGTTGAAGGACGGCCATTTTTT AACTGAGCATCCATCTAAAAGCCTTTTAGCGGCGCCCCTCTATAGAT

 Query #1:
 ACCCTTGAAGGACGGCCA TTTTTAAACTGAGCATCCATCTAAAAGCCTTTT

 Image: https://document.org/accord

POSITION	REFERENCE	ALTERNATE
4	G	С
18	AT	А
25	Т	TA
53	TAGCGGCGCCC	Т

Applications: *benchmarking*

- Genome wide association studies
- Pharmacogenomics
- Clinical diagnostics
- Benchmarking new methods and tech

Applications: *benchmarking*

- Genome wide association studies
- Pharmacogenomics
- Clinical diagnostics
- Benchmarking new methods and tech

Belton et al, "Hi-C: a comprehensive technique to capture the conformation of genomes". Nature Methods, 2012. DelveInsight Business Research. "Global DNA Sequencing Market Set to Reach USD 28.85 billion by 2027". Web, 2022.

Benchmarking: *a simple example*

Technology #1				Г	[echnol	ogy #2	
Referenc	ACCGTTGAAG#1:ACAGTAGAAG		GAAG	Reference:		ACCGTTGAAG	
Query #1			GAAG	Query #2:		ACCGTAGAGG	
CHROM	POS	REF	ALT	CHROM	POS	REF	ALT
chr14	3	C	A	chr14	6	T	A
chr14	6	T	A	chr14	9	A	G

Benchmarking: *a simple example*

Technology #1			1	Technology #2				Ground Truth			
Referenc Query #1	Reference:ACCGTTGAAGQuery #1:ACAGTAGAAG		Reference: Query #2:		ACCGTTGAAG ACCGTAGAGG		Reference: Query:		ACCGTTGAAG ACCGTAGAGG		
CHROM	POS	REF	ALT	CHROM	POS	REF	ALT	CHROM	POS	REF	ALT
chr14	3	С	А	chr14	6	Т	А	chr14	6	Т	А
chr14	6	Т	А	chr14	9	А	G	chr14	9	А	G

Benchmarking: *a simple example*

Technology #1			-	Technology #2				Ground Truth			
Reference: ACCGTTGAA		rt <mark>gaa</mark> g	Referenc	ce:	ACCGTTGAAG R		Referenc	Reference:		ACCGTTGAAG	
Query #1	L:	ACAG	FAGAAG	Query #2	2:	ACCG	FAGAGG	Query:		ACCG	TAGAGG
CHROM	POS	REF	ALT	CHROM	POS	REF	ALT	CHROM	POS	REF	ALT
Xchr14	3	С	Α	🗸 chr14	6	Т	Α	chr14	6	Т	А
🗸 chr14	6	Т	Α	🗸 chr14	9	А	G	chr14	9	А	G

Benchmarking: stratification by variant type

Benchmarking: *precision-recall curves*

 Reference:
 ACCGTTGAAGGACGGCCATTTTTT AACTGAGCATCCATCTAAAAGCCTTTTAGCGGCGCCCCTCTATAGAT

 Query #1:
 ACCCTTGAAGGACGGCCA TTTTTAAACTGAGCATCCATCTAAAAGCCTTTT

 1
 1

 1
 1

 SNP
 INDEL

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

 $F1 = 2 \cdot \frac{precision \cdot recall}{precision + recall}$

Benchmarking: *precision-recall curves*

Reference:ACCGTTGAAGGACGGCCATTTTTT AACTGAGCATCCATCTAAAAGCCTTTTAGCGGCGCCCCTCTATAGATQuery #1:ACCCTTGAAGGACGGCCA TTTTTAAACTGAGCATCCATCTAAAAGCCTTTT

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

 $F1 = 2 \cdot \frac{precision \cdot recall}{precision + recall}$

Outline

1. Context

- 2. Problem: complex variants
- 3. Discussion
- 4. Solution
- 5. Implementation
- 6. Results
- 7. Next Steps

Problem: *evaluation consistency*

Reference: Query #1: Query #2:

ACCGTTGAAGGACGGCCATTTTTT AACTGAGCATCCATCTAAAAGCCTTTTAGCGGCGCCCCTCTATAGAT ACCCTTGAAGGACGGCCA TTTTTAAACTGAGCATCCATCTAAAAGCCTTTT ACCCTTGAAGGACGGCCATTTTTA AACTGAGCATCCATCTAAAAGCCTTTT INDEL

SNP

 $Precision = \frac{TP}{TP + FP}$

$$Recall = \frac{TP}{TP + FN}$$

 $F1 = 2 \cdot \frac{precision \cdot recall}{precision + recall}$

Ground Truth

Representation #1								
Reference	e:	AAGG	AAATC					
Truth:		ATCGA	AAATC					
CHROM	POS	REF	ALT					
chr14	2	А	Т					
chr14	3	G	С					
chr14	4	G	GA					

Representation #2						
Referenc	e:	AAGG	AAATC			
Truth:		A T	C <mark>GAAAAT</mark> C			
CHROM	POS	REF	ALT			
chr14	1	AAGG	А			
chr14	1	А	ATCGA			

Ground Truth

	Representation #1							
Reference: AAGG AAATC								
Truth:		ATCGAAAATC						
CHROM	POS	REF	ALT					
chr14	2	А	Т					
chr14	3	G	С					
chr14	4	G	GA					

Representation #2						
Reference: AAGG AAATC						
Truth:		A TO	CGAAAATC			
CHROM	POS	REF	ALT			
chr14	1	AAGG	А			
chr14	1	А	ATCGA			

	Technology #1				Technology #2				Representation #1		
Reference:		AAGGA	AAATC	Reference: AAGGAAATC		Reference:		Referenc	e:	AAGG A	A7
Query #1	L:	ATCGA	AAATC	Query #2	2:	A A	AATC	Truth:		ATCGA	AZ
CHROM	POS	REF	ALT	CHROM	POS	REF	ALT	CHROM	POS	REF	
chr14	2	А	Т	chr14	1	AAGG	А	chr14	2	А	
chr14	3	G	С					chr14	3	G	

Ground Truth

e:	AAGG AAATC				
	ATCGAAAATC				
POS	REF	ALT			
2	А	Т			
3	G	С			
4	G	GA			
	e: POS 2 3 4	e: AAGG A ATCGAA POS REF 2 A 3 G 4 G			

Representation #2 **Reference:** AAGG AAATC Truth: TCGAAAATC Α CHROM POS REF ALT chr14 AAGG Α 1 chr14 ATCGA 1 Α

Technology #1				Technology #2					
Reference:		AAGGA	AAATC	Referenc	e:	AAGGAAATC			
Query	Query #1:		AAATC	Query #2:		A	AAATC		
CHRON Chr14 Chr14	1 POS 2 3	REF A G	ALT T C	CHROM Chr14	POS 1	REF AAG	ALT GGA		
SNP Pr SNP Re INDEL INDEL	ecision: call: Precision: Recall:	100% 100% NA 0%		SNP Prec SNP Reca INDEL Pr INDEL Re	cision: all: recision: ecall:	NA 0% 0% 0%			

Ground Truth

	Repres	sentation a	#1
Reference	e:	AAGG	AAATC
Truth:		ATCGA	AAATC
CHROM	POS	REF	ALT
chr14	2	А	Т
chr14	3	G	С
chr14	4	G	GA
	Repres	sentation i	#2
Reference	e:	AAGG	AAATC
Truth:		A T	CGAAAATC

CHROM	POS	REF	ALT
chr14	1	AAGG	А
chr14	1	А	ATCGA

	Techno	nlogv #	1	Technology #2			Ponro	Representation #1			
Referen Query #	ce: 1:	AAGGA ATCGA	AATC AATC	Reference: Query #2:		AAGGAAATC A AAATC		Referenc Truth:	Reference: Truth:		AAATC AAATC
CHROM Chr14 Chr14	POS 2 3	REF A G	ALT T C	CHROM	POS 1	REF AAGG	ALT A	CHROM chr14 chr14 chr14	POS 2 3 4	REF A G G	ALT T C GA
SNP Pree SNP Rec INDEL Pi INDEL Re	cision: all: recision: ecall:	100% 100% NA 0%		SNP Pre SNP Rec INDEL P INDEL R	cision: all: recision: ecall:	NA 0% 0% 0%		Referenc Truth:	<i>Repre</i> : :e:	sentation # AAGG A T	‡2 AAAT CGAAAAT
SNP Pres SNP Rec INDEL Pr INDEL R	cision: all: recision: ecall:	0% NA NA 0%		SNP Pre SNP Rec INDEL P INDEL R	cision: all: recision: ecall:	NA NA 100% 50%		CHROM chr14 chr14	POS 1 1	REF AAGG A	alt A Atcga

Ground Truth

Outline

- 1. Context
- 2. Problem
- 3. Discussion: complex variant representation
- 4. Solution
- 5. Implementation
- 6. Results
- 7. Next Steps

Reference AAGGAAATC

Query ATCGAAAATC

Heng Li. "Toward better understanding of artifacts in variant calling from high-coverage samples." Bioinformatics, 2014. Tan et al. "Unified representation of genetic variants." Bioinformatics, 2015.

Query ATCGAAAATC

ReferenceAAGGAAATCAlignmentAAGGAAA-TCATCGAAAATCATCGAAAATCVCFPOSREFALT2AG6AATCAAATC

Original

Heng Li. "Toward better understanding of artifacts in variant calling from high-coverage samples." Bioinformatics, 2014.

Reference AAGGAAATC

Query ATCGAAAATC

Alignment

AAGG.	AAA-TC AAAATC		AAGGAAA-TC ATCGAAAATC					
VCF								
POS	REF	ALT	POS	REF	ALT			
2	AG	TC	2	Α	Т			
6	AATC	AAATC	3	G	С			
			6	AATC	AAATC			
Orig	inal		Decomposed					

Heng Li. "Toward better understanding of artifacts in variant calling from high-coverage samples." Bioinformatics, 2014.

Reference AAGGAAATC Query ATCGAAAATC Alignment AAGGAAA-TC AAGGAAA-TC AAGGAAA-TC ATCGAAAATC ATCGAAAATC ATCGAAAATC VCF POS REF POS ALT POS REF ALT REF ALT 2 $\mathbf{2}$ AG TC Α Т $\mathbf{2}$ Α Т 3 3 6 AATC AAATC G С G С 6 AATC 7 AAATC A AA Original Decomposed Trimmed

Heng Li. "Toward better understanding of artifacts in variant calling from high-coverage samples." Bioinformatics, 2014.

Query ATCGAAAATC

			Q G G G	· · · · ·								
Alig	nment											
AAGG	AAA-TC		AAGG	AAGGAAA-TC		AAGGAAA-TC			AAGG	AAGG-AAATC		
ATCG	AAAATC		ATCG	AAAATC		ATCG	AAAATO	2	ATCG	AAAATO	3	
VCF	١											
POS	REF	ALT	POS	REF	ALT	POS	REF	ALT	POS	REF	ALT	
2	AG	TC	2	Α	Т	2	Α	Т	2	Α	Т	
6	AATC	AAATC	3	G	С	3	G	С	3	G	С	
			6	AATC	AAATC	7	Α	AA	4	G	GA	
Origi	inal		Deco	omposed	d	Trim	nmed		Left	shifte	d	

Heng Li. "Toward better understanding of artifacts in variant calling from high-coverage samples." Bioinformatics, 2014.

Tan et al. "Unified representation of genetic variants." Bioinformatics, 2015.

Reference AAGGAAATC

Refe	rence	AAGGAAA	TC		\mathbf{Q} uei		CGAAAA	TC						
Alig	nment													
AAGG	AGGAAA-TC AAGGAAA-TC		AAGG	AAGGAAA-TC			AAGG-AAATC			AAGGAAATC				
ATCG	AAAATC		ATCG	AAAATC		ATCG	AAAATO	2	ATCG	AAAATO	2	A	TCGAAAA	TC
VCF	י													
POS	REF	ALT	POS	REF	ALT	POS	REF	ALT	POS	REF	ALT	POS	REF	ALT
2	AG	TC	2	Α	Т	2	Α	Т	2	Α	Т	1	AAGG	Α
6	AATC	AAATC	3	G	С	3	G	С	3	G	С	1	Α	ATCGA
			6	AATC	AAATC	7	Α	AA	4	G	GA			
Orig	Driginal Decomposed		Trin	Trimmed		Left	Left shifted			Alternate				

Heng Li. "Toward better understanding of artifacts in variant calling from high-coverage samples." Bioinformatics, 2014.

Query ATCGAAAATC

					~	J								
Alig	nment													
AAGGAAA-TC AAGGAAA-TC		AAGG	AAGGAAA-TC			AAGG-AAATC			AAGGAAATC					
ATCG	AAAATC		ATCG	TCGAAAATC ATCGAAAATC		;	ATCGAAAATC		ATCGAAAATC					
VCF	I													
POS	REF	ALT	POS	REF	ALT	POS	REF	ALT	POS	REF	ALT	POS	REF	ALT
2	AG	TC	2	Α	Т	2	Α	Т	2	А	Т	1	AAGG	Α
6	AATC	AAATC	3	G	С	3	G	С	3	G	С	1	A	ATCGA
			6	AATC	AAATC	7	А	AA	4	G	GA			
Origi	inal		Deco	mposed	b	Trim	nmed		Left	shifte	d	Alte	rnate	

Heng Li. "Toward better understanding of artifacts in variant calling from high-coverage samples." Bioinformatics, 2014.

Tan et al. "Unified representation of genetic variants." Bioinformatics, 2015.

Reference AAGGAAATC

Choosing representations: *best-alignment normalization*

- *m* = match
- x = mis-match
- *o* = gap opening
- *e* = gap extension

Bayat et al. "Improved VCF normalization for accurate VCF comparison". Oxford Bioinformatics, 2017.

Choosing representations: *best-alignment normalization*

		Optio	on #1		Optic	Option #2				
т	= match	AAGG	-AAATO	2	AAGG	AAGGAAATC				
X	= mis-match	ATCG	AAAATO	2	A	TCGAAAA	TC			
0	= gap opening	$\begin{array}{c} {\sf POS}\\ 2 \end{array}$	REF A	ALT T	POS 1	REF AAGG	ALT A			
е	= gap extension	$\frac{3}{4}$	G G	C GA	1	A	ATCGA			
		x + x + (o+e)		(o+3e) + (o+4e)						

Bayat et al. "Improved VCF normalization for accurate VCF comparison". Oxford Bioinformatics, 2017.

Choosing representations: *best-alignment normalization*

<i>m</i> = 0	= match
<i>x</i> = 5	= mis-match
<i>o</i> = 6	= gap opening
<i>e</i> = 2	= gap extension

Option #1								
AAGG-AAATC ATCGAAAATC								
POS 2 3 4	REF A G G	ALT T C GA						
<i>x + x + (o+e)</i> 18								

Option #2					
AAGG	-A	A	A	Т	С
•	•	•	•	•	•

A'	ГССААААТ	C

POS	REF	ALT
1	AAGG	Α
1	Α	ATCGA

Bayat et al. "Improved VCF normalization for accurate VCF comparison". Oxford Bioinformatics, 2017.

Alignment-based normalization design space

To what extent do parameters matter?

Representation	\mathbf{SNPs}	INDELs
Original	$3,\!367,\!320$	$548,\!602$
A	0	$7,\!185,\!103$
B	$3,\!366,\!095$	$547,\!654$
C	$3,\!369,\!257$	$545,\!077$
D	$3,\!369,\!279$	$544,\!664$

Design point A: *structural and copy number variants*

SV / CNV Analysis: only recently enabled by long reads

- 2014: NIST/GIAB initial small variant benchmark (77% of GRCh38)
- 2019: NIST/GIAB small variant benchmark expansion (84% of GRCh38)
- **2020**: NIST/GIAB structural variant benchmarks
- **2022**: NIST/GIAB challenging small variants

(92% of GRCh38)

- **2023**: NIST/GIAB tandem repeat benchmarks
- 2022: T2T Consortium "The first complete human genome"

Motivation: *GIAB tandem repeat benchmark*

Dataset	SNPs	INDELS
Original GIAB TR	917,255	431,545
Normalized GIAB TR	502,076	461,258

Outline

- 1. Context
- 2. Problem
- 3. Discussion
- 4. Solution: new comparison methods
- 5. Implementation
- 6. Results
- 7. Next Steps

Idea #1: sequence-based evaluation metrics

Reference:ACCGTTGAAGGACGGCCATTTTTT AACTGAGCATCCATCTAAAAGCCTTTTAGCGGCGCCCCTCTATAGATQuery #1:ACCCTTGAAGGACGGCCA TTTTTAAACTGAGCATCCATCTAAAAGCCTTTT

 Truth:
 ACCGTTGAAGGACGGCCA
 TTTTTAAACTGAGCATCCATCTAAAAGCCTTTTAGCGGCGCCCCTCTATAGAT

- Edit Distance
- Distinct Edits
- Alignment Distance

Idea #2: standardize complex variant representation

Reference:	ACCGTTGAAGGACGGCCATTTTTT AACTGAGCATCCATCTAAAAGCCTTTTAGCGGCGCCCCTCTATAGAT
Query #1:	ACCCTTGAAGGACGGCCA TTTTTAAACTGAGCATCCATCTAAAAGCCTTTT
Query #2:	ACCCTTGAAGGACGGCCATTTTTA AACTGAGCATCCATCTAAAAGCCTTTT

Query

Idea #3: allow partial credit for variant calls

Reference:ACCGTTGAAGGACGGCCATTTTTAACTGAGCATCCATCTAAAAGCCTTTTAGCGGCGCCCCTCTATAGATQuery #1:ACCCTTGAAGGACGGCCATTTTTAAACTGAGCATCCATCTAAAAGCCTTTT20 basesTruth:ACCCTTGAAGGACGGCCATTTTTAAACTGAGCATCCATCTAAAAGCCTTTTAG18 bases

Query			Truth		
POS	REFERENCE	ALTERNATE	POS	REFERENCE	ALTERNATE
4	G	С	4	G	С
24	Т	Α	24	Т	А
53	TAGCGGCG	Т	55	GCGGCG	G

Idea #3: allow partial credit for variant calls

Reference:ACCGTTGAAGGACGGCCATTTTTAACTGAGCATCCATCTAAAAGCCTTTTAGCGGCGCCCCTCTATAGATQuery #1:ACCCTTGAAGGACGGCCATTTTTAAACTGAGCATCCATCTAAAAGCCTTTT20 basesTruth:ACCCTTGAAGGACGGCCATTTTTAAACTGAGCATCCATCTAAAAGCCTTTTAG18 bases

Query			Truth		
POS	REFERENCE	ALTERNATE	POS	REFERENCE	ALTERNATE
V 4	G	С	v 4	G	С
🗸 24	Т	А	V 24	Т	А
X 53	TAGCGGCG	Т	X 55	GCGGCG	G

Idea #3: allow partial credit for variant calls

Reference:ACCGTTGAAGGACGGCCATTTTTAACTGAGCATCCATCTAAAAGCCTTTTAGCGGCGCCCCTCTATAGATQuery #1:ACCCTTGAAGGACGGCCATTTTTAAACTGAGCATCCATCTAAAAGCCTTTT20 basesTruth:ACCCTTGAAGGACGGCCATTTTTAAACTGAGCATCCATCTAAAAGCCTTTTAG18 bases

Reference: GAGCC

 Query #1:
 1
 GACCC

 2
 GTGAC

Phased Query

POS	REF	ALT	GENOTYPE
2	А	Т	0 1
3	G	С	1 0
4	С	А	0 1

"Correct" Query haps:

- 1 GACCC
- 2 GTGAC

Query #1: 1 GACCC 2 GTGAC

Reference:

Phased Query

GAGCC

"Correct" Query haps:

- 1 GACCC
- 2 GTGAC

Reference		CACCC					Unphased Query			
Kelerenee	•				POS	REF	ALT	GENOTYPE		
Query #1: 1 GACCC				2	А	Т	<mark>0/1</mark>			
		Z G <mark>I</mark> G <mark>A</mark> (~		3	G	С	<mark>0/1</mark>		
Phased Query			4	С	А	<mark>0/1</mark>				
POS	REF	ALT	GENOTYPE							
2	А	T	<mark>0 1</mark>							
3	G	<mark>C</mark>	<mark>1 0</mark>							
4	С	A	<mark>0 1</mark>							

- 1 GACCC
- 2 GTGAC

G <mark>T</mark> GCC
GA <mark>CA</mark> C
GA <mark>CA</mark> C G <mark>T</mark> GCC

Outline

- 1. Context
- 2. Problem
- 3. Discussion
- 4. Solution
- 5. Implementation: dynamic programming / alignment
- 6. Results
- 7. Next Steps

Overview

Overview

Superclustering: *simple reference distance heuristic*

Overview

Precision/Recall:

edit distance, allows skipping FP query variants, backtracking

Overview

Outline

- 1. Context
- 2. Problem
- 3. Discussion
- 4. Solution
- 5. Implementation
- 6. Results: improved evaluation stability
- 7. Next Steps

Example #1: complex variant normalization

Original VCF: GIAB Tandem Repeats

chr20 278985 A C

chr20 278986 C G

chr20 278990 G C

chr20 278993 C A

G GGGAGGGAGGGCGGGACGGAGGGA chr20 278994 AGGGCGGGACGGAGGGAGGGAGGGAGGGAGGGAGGGCGGGA GGGAGGGAGGGACGGAGGGCGGGACGGCGGGAGGGCGGGAC AGGGCGGGACGGAGGGAGGGAGGGC

chr20 278998 C G

- chr20 279001 C A
- chr20 279022 C G
- chr20 279029 A C
- chr20 279033 C A
- chr20 279038 C T

chr20 279045 C A

chr20 279069 A C

12 SNPs 1 INS (622bp)

Normalized VCF: vcfdist design point C

2 INS (438bp, 184bp)

Example #2: *complex variant near-equivalence*

Query:

CHROM	POS	REF	ALT	CALL	CREDIT
chr1	976722	С	CAGGAACCGCCTCCCACTCCCCCACAACCCCGG	GAACCGC	СТССАСТС
CCCCCGC	CAACCCC	GGAACCO	GCCTCCCACTCCCCCGCAACCCC	INS PP	0.979167
chr1	976745	G	A	SNP PP	0.979167

Truth:

CHROM	POS	REF	ALT	CALL	CREDIT
chr1	976715	А	ACAACCCCAGGAACCGCCTCCCACTCCCCCA	INS PP	0.979167
chr1	976747	С	CAACCCCGGGAACCGCCTCCCACTCCCCCG	INS PP	0.979167
chr1	976777	G	A	SNP PP	0.979167
chr1	976811	С	CAACCCCGGGAACCGCCTCCCACTCCCCCG	INS PP	0.979167
chr1	976840	С	G	SNP PP	0.979167
chr1	976841	G	A	SNP PP	0.979167

Dataset: *PrecisionFDA Truth Challenge V2*

- 64 whole genome sequencing submissions
- Illumina, PacBio, ONT, and Multi

Olson et al. "PrecisionFDA Truth Challenge V2: Calling variants from short and long reads in difficult-to-map regions." Cell, 2022.

Dataset: *PrecisionFDA Truth Challenge V2*

- 64 whole genome sequencing submissions
- Illumina, PacBio, ONT, and Multi

Olson et al. "PrecisionFDA Truth Challenge V2: Calling variants from short and long reads in difficult-to-map regions." Cell, 2022.

Analysis: select design points

Results: *normalization fixes representation bias*

Results: *stable performance across representations*

Outline

- 1. Context
- 2. Problem
- 3. Discussion
- 4. Solution
- 5. Implementation
- 6. Results
- 7. Next Steps: structural and unphased variants

Next Steps: *structural and unphased variants*

NIST Collaboration

- vcfdist now works with structural variants up to 10,000bp
- Comprehensive evaluation of recent Verkko assemblies
- Simultaneous benchmarking of SNPs/INDELs/TRs/SVs

Next Steps: *structural and unphased variants*

NIST Collaboration

- vcfdist now works with structural variants up to 10,000bp
- Comprehensive evaluation of recent Verkko assemblies
- Simultaneous benchmarking of SNPs/INDELs/TRs/SVs

Planned Research

- Extend vcfdist's alignment algorithm to more general graphs
- This allows vcfdist to evaluate unphased query variant call sets

Conclusion

This project was supported by the National Science Foundation Graduate Research Fellowship under Grant 1841052. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation

Expected Graduation: Summer 2024

